1,798
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Geosynthetic-reinforced and pile-supported embankments: theoretical discussion of finite difference numerical analyses results

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4337-4363 | Received 11 Feb 2022, Accepted 06 Mar 2023, Published online: 04 Apr 2023

References

  • Abdullah, C. H., & Edil, T. B. (2007). Numerical analysis of catenary load transfer platform for geopier-supported embankment. Advances in Measurement and Modeling of Soil Behavior, Proceedings. DOI: 10.1061/40917(236)11
  • Almeida, M. S. S., Fagundes, D. F., Thorel, L., & Blanc, M. (2020). Geosynthetic-reinforced pile-embankments: Numerical, analytical and centrifuge modelling. Geosynthetics International, 27, 301–314. DOI: 10.1680/jgein.19.00011
  • Ariyarathne, P., Liyanapathirana, D. S., & Leo, C. J. (2013). Effect of geosynthetic creep on reinforced pile-supported embankment systems. Geosynthetics International, 20, 421–435. DOI: 10.1680/gein.13.00029
  • Boschi, K., di Prisco, C., Flessati, L., Galli, A., & Tomasin, M. (2020). Punching tests on deformable Facing structures: Numerical analyses and mechanical interpretation. Lecture notes in civil engineering. Springer International Publishing. DOI: 10.1007/978-3-030-21359-6_45
  • Boschi, K., di Prisco, C., Flessati, L., & Mazzon, N. (2021). Numerical analysis of the mechanical response of anchored wire meshes. Lecture notes in civil engineering. Springer International Publishing. DOI: 10.1007/978-3-030-64518-2_92
  • Briançon, L., & Simon, B. (2012). Performance of pile-supported embankment over soft soil: Full-scale experiment. Journal of Geotechnical and Geoenvironmental Engineering, 138, 551–561. DOI: 10.1061/(ASCE)GT.1943-5606.0000561
  • BS8006-1. (2010). Code of practice for strengthened/reinforced soils and other fills. Sect. 8 (pp. 160-209). British Standards Institution.
  • Carlsson, B. (1987). Reinforced soil, principles for calculation. Terratema AB. (in Swedish).
  • Chen, R. P., Chen, Y. M., Han, J., & Xu, Z. Z. (2008a). A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression. Canadian Geotechnical Journal, 45, 611–623. DOI: 10.1139/T08-003
  • Chen, Y. M., Cao, W. P., & Chen, R. P. (2008b). An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotext Geomembranes, 26, 164–174. DOI: 10.1016/j.geotexmem.2007.05.004
  • Dafalias, Y. F., & Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering Mechanics. 130, 622–634. DOI: 10.1061/(ASCE)0733-9399(2004)130:6(622)
  • Almeida, M. S.S., Ehrlich, M., Spotti, A. P., & Maroues, M. E. S. (2007). Embankment supported on piles with biaxial geogrids. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 160, 185–192. DOI: 10.1680/geng.2007.160.4.185
  • Dewoolkar, M. M., Santichaianant, K., & Ko, H. Y. (2007). Centrifuge modeling of granular soil response over active circular trapdoors. Soils Found, 47, 931–945. DOI: 10.3208/sandf.47.931
  • di Prisco, C., & Flessati, L. (2021). Progressive failure in elastic-viscoplastic media: From theory to practice. Geotechnique, 71, 153–169. DOI: 10.1680/jgeot.19.P.045
  • di Prisco, C., Flessati, L., Frigerio, G., & Galli, A. (2020a). Mathematical modelling of the mechanical response of earth embankments on piled foundations. Geotechnique, 70, 755–773. DOI: 10.1680/jgeot.18.P.127
  • di Prisco, C., Flessati, L., Galli, A., & Mangraviti, V. (2020b). A simplified approach for the estimation of settlements of earth embankments on piled foundations. In: Calvetti, F., Cotecchia, F., Galli, A., Jommi, C. (Eds.), Lecture notes in civil engineering (pp. 640–648). Springer International Publishing. DOI: 10.1007/978-3-030-21359-6_68
  • di Prisco, C., Nova, R., & Lanier, J. (1993). A mixed isotropic-kinematic hardening constitutive law for sand. Modern approaches to plasticity. Elsevier. DOI: 10.1016/B978-0-444-89970-5.50010-8
  • di Prisco, C., & Pisano, F. (2011). An exercise on slope stability and perfect elastoplasticity. Geotechnique, 61, 923–934. DOI: 10.1680/geot.9.P.040
  • Drescher, A., & Detournay, E. (1993). Limit load in translational failure mechanisms for associative and non-associative materials. Geotechnique, 43, 443–456. DOI: 10.1680/geot.1993.43.3.443
  • EBGEO. (2010). Empfehlungen für den entwurf und die berechnung von erdkörpern mit bewehrungen aus geokunststoffen. EBGEO. DOI: 10.1002/9783433600597
  • Fagundes, D. F., Almeida, M. S. S., Thorel, L., & Blanc, M. (2017). Load transfer mechanism and deformation of reinforced piled embankments. Geotext Geomembranes, 45, 1–10. DOI: 10.1016/j.geotexmem.2016.11.002
  • Filz, G., Sloan, J., McGuire, M. P., Collin, J., & Smith, M. (2012). Column-supported embankments: Settlement and load transfer. In Proc.: GeoCongress 2012. Oakland, California, United States (pp. 54–77). American Society of Civil Engineers. DOI: 10.1061/9780784412138.0003
  • Filz, G. M., Sloan, J. A., McGuire, M. P., Smith, M., & Collin, J. (2019). Settlement and vertical load transfer in column-supported embankments. Journal of Geotechnical and Geoenvironmental Engineering, 145. DOI: 10.1061/(ASCE)GT.1943-5606.0002130
  • Filz, G. M., & Smith, M. E. (2006). Final contract report design of bridging layers in geosynthetic-reinforced, column-supported embankments. Report Prepared for Virginia Department of Transport. https://vtechworks.lib.vt.edu/handle/10919/46681
  • Flessati, L. (2021). Application of an innovative displacement based design approach for earth embankments on piled foundations. In: Barla, M., Di Donna, A., Sterpi, D. (Eds.), Lecture notes in civil engineering (pp. 293–299). Springer International Publishing. DOI: 10.1007/978-3-030-64518-2_35
  • Flessati, L., di Prisco, C., Corigliano, M., & Mangraviti, V. (2022). A simplified approach to estimate settlements of earth embankments on piled foundations: The role of pile shaft roughness. European Journal of Environmental and Civil Engineering, 27, 194–214. DOI: 10.1080/19648189.2022.2035259
  • Girout, R., Blanc, M., Thorel, L., & Dias, D. (2018). Geosynthetic reinforcement of pile-supported embankments. Geosynthetics International, 25, 37–49. DOI: 10.1680/jgein.17.00032
  • Girout, R., Blanc, M., Thorel, L., Fagundes, D. F., & Almeida, M. S. S. (2016). Arching and deformation in a piled embankment: Centrifuge tests compared to analytical calculations. Journal of Geotechnical and Geoenvironmental Engineering, 142, 04016069. DOI: 10.1061/(ASCE)GT.1943-5606.0001557
  • Han, J., & Gabr, M. A. (2002). Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. Journal of Geotechnical and Geoenvironmental Engineering, 128, 44–53. DOI: 10.1061/(ASCE)1090-0241(2002)128:1(44)
  • Han, J., Oztoprak, S., Parsons, R. L., & Huang, J. (2007). Numerical analysis of foundation columns to support widening of embankments. Computers and Geotechnics, 34, 435–448. DOI: 10.1016/j.compgeo.2007.01.006
  • Hewlett, B. W., & Randolph, M. (1988). Analysis of piled embankments. GR Engineering, 21, 3–7.
  • Hoppe, E. J., & Hite, S. L. (2006). Performance of a pile-supported embankment. Research report. http:/www.virginiadot.org/vtrc/main/online_reports/pdf/06-r36.pdf
  • Huang, J., & Han, J. (2009). 3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment. Geotext Geomembranes, 27, 272–280. DOI: 10.1016/j.geotexmem.2009.01.001
  • Huang, J., & Han, J. (2010). Two-dimensional parametric study of geosynthetic-reinforced column-supported embankments by coupled hydraulic and mechanical modeling. Computers and Geotechnics, 37, 638–648. DOI: 10.1016/j.compgeo.2010.04.002
  • Iglesia, G. R. (1991). Trapdoor experiments on the centrifuge–a study of arching in geomaterials and similitude in geotechnical models. Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/113811
  • Iglesia, G. R., Einstein, H. H., & Whitman, R. V. (2014). Investigation of soil arching with centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 140. DOI: 10.1061/(ASCE)GT.1943-5606.0000998
  • Itasca. (2017). FLAC3D v.6.0—fast Lagrangian analysis of continua in three dimensions. User manual. Itasca Consulting Group, Inc. Minnesota, United States of America.
  • Jennings, K., & Naughton, P. J. (2012). Similitude conditions modeling geosynthetic-reinforced piled embankments using FEM and FDM techniques. ISRN Civil Engineering, 2012, 1–16. DOI: 10.1061/(ASCE)GT.1943-5606.0000998
  • King, D. J., Bouazza, A., Gniel, J. R., Rowe, R. K., & Bui, H. H. (2017). Serviceability design for geosynthetic reinforced column supported embankments. Geotext Geomembranes, 45, 261–279. DOI: 10.1016/j.geotexmem.2017.02.006
  • Ladanyi, B., & Hoyaux, B. (1969). A study of the trap-door problem in a granular mass: Discussion. Canadian Geotechnical Journal, 6, 441–443. DOI: 10.1139/t69-044
  • Lai, H. J., Zheng, J. J., Zhang, R. J., & Cui, M. J. (2018). Classification and characteristics of soil arching structures in pile-supported embankments. Computers and Geotechnics, 98, 153–171. DOI: 10.1016/j.compgeo.2018.02.007
  • Lehn, J., Moormann, C., & Aschrafi, J. (2016). Numerical investigations on the load distribution over the geogrid of a basal reinforced piled embankment under cyclic loading. Procedia Engineering, 149, 435–444. DOI: 10.1016/j.proeng.2016.06.055
  • Liu, C. N., Zornberg, J. G., Chen, T. C., Ho, Y. H., & Lin, B. H. (2009a). Behavior of geogrid-sand interface in direct shear mode. Journal of Geotechnical and Geoenvironmental Engineering, 135, 1863–1871. DOI: 10.1061/(asce)gt.1943-5606.0000150
  • Liu, C. N., Ho, Y. H., & Huang, J. W. (2009b). Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotext Geomembranes, 27, 19–30. DOI: 10.1016/j.geotexmem.2008.03.002
  • Liu, H. L., Ng, C. W. W., & Fei, K. (2007). Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: Case study. Journal of Geotechnical and Geoenvironmental Engineering, 133, 1483–1493. DOI: 10.1061/(asce)1090-0241(2007)133:12(1483)
  • Low, B. K., Tang, S. K., & Choa, V. (1994). Arching in piled embankments. Journal of Geotechnical Engineering, 120, 1917–1938. DOI: 10.1061/(ASCE)0733-9410(1994)120:11(1917)
  • Mangraviti, V. (2021). Theoretical modelling of embankments based on piled foundations. PhD Thesis, Milano, 12 May, 2021,
  • Mangraviti, V., Flessati, L., & Di Prisco, C. (2022). A rheological model for georeinforced embankments based on piled foundations. IOP Conference Series: Materials Science and Engineering, 1260(1), 012014 10.1088/1757-899X/1260/1/012014
  • Mangraviti, V. (2022). Displacement-based design of Geosynthetic-Reinforced Pile-Supported embankments to increase sustainability. In: Civil and Environmental Engineering for Sustainable Development Goals: emerging issues. Antonelli, M., Della Vecchia, G. (Eds.). Springer International Publishing, Cham, pp. 83–96. DOI: 10.1007/978-3-030-99593-5_7
  • Mangraviti, V., Flessati, L., & di Prisco, C. (2021). Modelling the development of settlements of earth embankments on piled foundations. In: Barla, M., Di Donna, A., Sterpi, D. (Eds.), Lecture notes in civil engineering (pp. 811–816). Springer International Publishing. DOI: 10.1007/978-3-030-64518-2_96
  • Manzari, M. T., & Dafalias, Y. F. (1997). A critical state two-surface plasticity model for sands. Geotechnique, 47, 255–272. DOI: 10.1680/geot.1997.47.2.255
  • Marston, A. (1913). The theory of loads on pipe in ditches and tests of cement and clay drain tile and sewer pipe. Iowa State College of Agriculture and Mechanic Arts.
  • Marveggio, P., Redaelli, I., & di Prisco, C. (2022). Phase transition in monodisperse granular materials: How to model it by using a strain hardening visco-elastic-plastic constitutive relationship. International Journal for Numerical and Analytical Methods in Geomechanics, 46, 2415–2445.
  • McGuire, M. P. (2011). Critical height and surface deformation of column-supported embankments. Virginia Polytechnic Institute and State University. https://theses.lib.vt.edu/theses/available/etd-11142011-113910/
  • McKelvey, J. A. (1994). The anatomy of soil arching. Geotext Geomembranes, 13, 317–329. DOI: 10.1016/0266-1144(94)90026-4
  • Moraci, N., Cardile, G., Gioffrè, D., Mandaglio, M. C., Calvarano, L. S., & Carbone, L. (2014). Soil geosynthetic interaction: Design parameters from experimental and theoretical analysis. Transp Infrastruct Geotechnol, 1, 165–227. DOI: 10.1007/s40515-014-0007-2
  • Naughton, P. J. (2007). The significance of critical height in the design of piled embankments (pp. 1–10). American Society of Civil Engineers (ASCE). DOI: 10.1061/40916(235)3
  • Nunez, M. A., Briançon, L., & Dias, D. (2013). Analyses of a pile-supported embankment over soft clay: Full-scale experiment, analytical and numerical approaches. Engineering Geology, 153, 53–67. DOI: 10.1016/j.enggeo.2012.11.006
  • Pham, T. A., & Dias, D. (2021). Comparison and evaluation of analytical models for the design of geosynthetic-reinforced and pile-supported embankments. Geotext Geomembranes, 49, 528–549. DOI: 10.1016/j.geotexmem.2020.11.001
  • Pisanò, F., Flessati, L., & di Prisco, C. (2016). A macroelement framework for shallow foundations including changes in configuration. Geotechnique, 66, 910–926. DOI: 10.1680/jgeot.16.P.014
  • Plaut, R. H., & Filz, G. M. (2010). Analysis of geosynthetic reinforcement in pile-supported embankments. Part III: Axisymmetric model. Geosynthetics International, 17, 77–85. DOI: 10.1680/gein.2010.17.2.77
  • Potts, V., & Zdravkovic, L. (2010). Finite-element study of arching behaviour in reinforced fills. Proceedings of the Institution of Civil Engineers: Ground Improvement, 163, 217–229. DOI: 10.1680/grim.2010.163.4.217
  • Raithel, M., Kirchner, A., & Kempfert, H. G. (2008). German recommendations for reinforced embankments on pile-similar elements.Geosynthetics in Civil and Environmental Engineering - Geosynthetics Asia 2008: Proceedings of the 4th Asian Regional Conference on Geosynthetics (pp. 697–702). DOI: 10.1007/978-3-540-69313-0_128
  • Reshma, B., Rajagopal, K., & Viswanadham, B. V. S. (2020). Centrifuge model studies on the settlement response of geosynthetic piled embankments. Geosynthetics International, 27, 170–181. DOI: 10.1680/jgein.19.00009
  • Rogbeck, Y., Gustavsson, S., Sodergren, I., & Lindquist, D. (1998). Reinforced piled embankments in Sweden - design aspects. Proceedings, sixth international conference on geosynthetics (pp. 755–762). Rowe, R. K.
  • Roscoe, K., & Burland, J. B. (1968). On the generalised stress-strain behaviour of “wet" clay. Engenneering plasticity (pp. 532–609). Heyman, J., Leckie, F. A.
  • Rowe, R. K., & Liu, K. W. (2015). Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile-supported embankment. Canadian Geotechnical Journal, 52, 2041–2054. DOI: 10.1139/cgj-2014-0506
  • Rui, R., Han, J., van Eekelen, S. J. M., & Wan, Y. (2019). Experimental investigation of soil-arching development in unreinforced and geosynthetic-reinforced pile-supported embankments. Journal of Geotechnical and Geoenvironmental Engineering, 145, 04018103. DOI: 10.1061/(asce)gt.1943-5606.0002000
  • Russell, D., & Pierpoint, N. (1997). An assessment of design methods for piled embankments. GR Engineering, 30, 39–44.
  • Sloan, J. A. (2011). Column-supported embankments: Full-scale tests and design recommendations [Doctoral dissertations]. University Libraries. DOI: 10.1088/1751-8113/44/8/085201
  • Stewart, M. E., & Filz, G. M. (2005). Influence of clay compressibility on geosynthetic loads in bridging layers for column-supported embankments. Geotechnical Special Publication 156, 1–14. DOI: 10.1061/40777(156)8
  • Svanø, G., Ilstad, T., Eiksund, G., & Want, A. (2000). Alternative calculation principle for design of piled embankments with base reinforcement. Proceedings of the 4th Ground Improvement Geosystems in Helsinki. Finnish Geotechnical Society.
  • Terzaghi. (1936). Stress distribution in dry and in saturated sand above a yielding trap-door . International Society for Soil Mechanics and Geotechnical Engineering (pp. 536–537).
  • Terzaghi, K. (1943). Theoretical soil mechanics. John Wiley & Sons, Inc. (66-76) DOI: 10.1002/9780470172766
  • Van Duijnen, P. G., Van Eekelen, S. J. M., & Van Der Stoel, A. E. C. (2010). Monitoring of a railway piled embankment . 9th International Conference on Geosynthetics - Geosynthetics: Advanced Solutions for a Challenging World, ICG 2010 (pp. 1461–1464).
  • Van Eekelen, S. J. M., Bezuijen, A., Lodder, H. J., & Van Tol, A. F. (2012a). Model experiments on piled embankments. Part I. Geotext Geomembranes, 32, 69–81. DOI: 10.1016/j.geotexmem.2011.11.002
  • Van Eekelen, S. J. M., Bezuijen, A., Lodder, H. J., & Van Tol, A. F. (2012b). Model experiments on piled embankments. Part II. Geotext Geomembranes, 32, 82–94. DOI: 10.1016/j.geotexmem.2011.11.003
  • Van Eekelen, S. J. M., Bezuijen, A., & Oung, O. (2003). Arching in piled embankments; experiments and design calculations. BGA International Conference On Foundations: Innovations, Observations Design And Practice (pp. 885–894).
  • van Eekelen, S. J. M., Bezuijen, A., & van Tol, A. F. (2011). Analysis and modification of the British Standard BS8006 for the design of piled embankments. Geotext Geomembranes, 29, 345–359. DOI: 10.1016/j.geotexmem.2011.02.001
  • van Eekelen, S. J. M., Bezuijen, A., & van Tol, A. F. (2015). Validation of analytical models for the design of basal reinforced piled embankments. Geotext Geomembranes, 43, 56–81. DOI: 10.1016/j.geotexmem.2014.10.002
  • Van Eekelen, S. J. M., Bezuijen, A., & Van Tol, A. F. (2013). An analytical model for arching in piled embankments. Geotext Geomembranes, 39, 78–102. DOI: 10.1016/j.geotexmem.2013.07.005
  • Van Eekelen, S. J. M., Venmans, A. A. M., Bezuijen, A., & Van Tol, A. F. (2020). Long term measurements in the Woerden geosynthetic-reinforced pile-supported embankment. Geosynthetics International, 27, 142–156. DOI: 10.1680/jgein.17.00022
  • Vardoulakis, I., Graf, B., & Gudehus, G. (1981). Trap-door problem with dry sand: A statical approach based upon model test kinematics. International Journal for Numerical and Analytical Methods in Geomechanics, 5, 57–78. DOI: 10.1002/nag.1610050106
  • Vermeer, P. A. (1990). The orientation of shear bands in biaxial tests. Geotechnique, 40, 223–236. DOI: 10.1680/geot.1990.40.2.223
  • Wang, M. C., Feng, Y. X., & Jao, M. (1996). Stability of geosynthetic-reinforced soil above a cavity. Geotext Geomembranes, 14, 95–109. DOI: 10.1016/0266-1144(96)84939-9
  • Wijerathna, M., & Liyanapathirana, D. S. (2020). Load transfer mechanism in geosynthetic reinforced column-supported embankments. Geosynthetics International, 27, 236–248. DOI: 10.1680/jgein.19.00022
  • Yan, L., Yang, J. S., & Han, J. (2006). Parametric study on geosynthetic-reinforced pile-supported embankments. Advances in Earth Structures Proceedings. American Society of Civil Engineers.
  • Yapage, N. N. S., & Liyanapathirana, D. S. (2014). A parametric study of geosynthetic-reinforced column-supported embankments. Geosynthetics International, 21, 213–232. DOI: 10.1680/gein.14.00010
  • Zaeske, D. (2001). Zur Wirkungsweise von unbewehrten und bewehrten mineralischen Tragschichten über pfahlartigen Gründungselementen. University Department of Geotechnics.
  • Zhang, C., Jiang, G., Liu, X., & Buzzi, O. (2016). Arching in geogrid-reinforced pile-supported embankments over silty clay of medium compressibility: Field data and analytical solution. Computers and Geotechnics, 77, 11–25. DOI: 10.1016/j.compgeo.2016.03.007
  • Zheng, G., Yang, X., Zhou, H., & Chai, J. (2019). Numerical modeling of progressive failure of rigid piles under embankment load. Canadian Geotechnical Journal, 56, 23–34. DOI: 10.1139/cgj-2017-0613
  • Zheng, J. J., Chen, B. G., Lu, Y. E., Abusharar, S. W., & Yin, J. H. (2009). The performance of an embankment on soft ground reinforced with geosynthetics and pile walls. Geosynthetics International, 16, 173–182. DOI: 10.1680/gein.2009.16.3.173
  • Zhuang, Y., Cheng, X., & Wang, K. (2020). Analytical solution for geogrid-reinforced piled embankments under traffic loads. Geosynthetics International, 27, 249–260. DOI: 10.1680/jgein.19.00023