618
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Engineering behavior of ambient-cured geopolymer concrete activated by an alternative silicate from rice husk ash

, ORCID Icon, , , &
Pages 4435-4465 | Received 23 Jun 2022, Accepted 11 Mar 2023, Published online: 30 Mar 2023

References

  • Demir, F., & Derun, E. M. (2019). A response surface methodology application to fly ash based geopolymer synthesized by alkali fusion method. Journal of Non-Crystalline Solids. 524, 119649. https://doi.org/10.1016/j.jnoncrysol.2019.119649
  • Abdulkareem, M., Havukainen, J., Nuortila-Jokinen, J., & Horttanainen, M. (2021). Environmental and economic perspective of waste-derived activators on alkali-activated mortars. Journal of Cleaner Production, 280, 124651. https://doi.org/10.1016/j.jclepro.2020.124651
  • ACI 209R-08. (2008). Prediction of creep, shrinkage, and temperature effects in concrete structures. In ACI Manual of Concrete. Practice Part 1: materials and general properties of concrete .
  • ACI 318-19. (2019). Building code requirements for structural concrete and commentary. American Concrete Institute.
  • Albitar, M., Visintin, P., Ali, M. M., & Drechsler, M. (2015). Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE Journal of Civil Engineering, 19(5), 1445–1455. https://doi.org/10.1007/s12205-014-1254-z
  • Allahverdi, A., Najafi Kani, E., & Shaverdi, B. (2017). Carbonation versus efflorescence in alkali-activated blast-furnace slag in relation with chemical composition of activator. International Journal of Civil Engineering, 15(4), 565–573. https://doi.org/10.1007/s40999-017-0225-4
  • Alnahhal, M. F., Hamdan, A., Hajimohammadi, A., & Kim, T. (2021). Effect of rice husk ash-derived activator on the structural build-up of alkali activated materials. Cement and Concrete Research. 150, 106590. https://doi.org/10.1016/j.cemconres.2021.106590
  • Alnahhal, M. F., Kim, T., & Hajimohammadi, A. (2021). Waste-derived activators for alkali-activated materials: A review. Cement and Concrete Composites. 118, 103980. https://doi.org/10.1016/j.cemconcomp.2021.103980
  • Andreola, F., Barbieri, L., & Lancellotti, I. (2020). The environmental friendly route to obtain sodium silicate solution from rice husk ash: A comparative study with commercial silicates deflocculating agent. Waste and Biomass Valorization, 11(11), 6295–6305. https://doi.org/10.1007/s12649-019-00849-w
  • Arbi, K., Nedeljkovic, M., Zuo, Y., Grünewald, S., Keulen, A., & Ye, G. (2015). Experimental study on workability of alkali activated fly ash and slag-based geopolymer concretes. In Icers (Eds.) Geopolymers: The route to eliminate waste and emissions in ceramic and cement manufacturing , ISBN. : 9781326377328 75–78,
  • ASTM C 1157-20. (2020). Standard performance and specification for hydraulic cement (Vol. 04.01). American Society of Testing and Materials (ASTM).
  • ASTM C 138-17. (2017). Standard test method for density (unit weight), yield, and air content (Gravimetric) of Concrete (Vol. 04.02). American Society of Testing and Materials (ASTM).
  • ASTM C 143-20. (2020). Standard test method for slump of hydraulic-cement concrete (Vol. 04.02). American Society of Testing and Materials (ASTM).
  • ASTM C 192-19. (2019). Standard practice for making and curing concrete test specimens in the laboratory (Vol. 04.02). American Society of Testing and Materials (ASTM).
  • ASTM C 33-18. (2018). Standard specification for concrete aggregates (Vol. 04.02). American Society of Testing and Materials (ASTM).
  • ASTM C 496-17. (2017). Standard test method for splitting tensile strength of cylindrical concrete specimens (Vol. 04.02). American Society of Testing and Materials (ASTM).
  • ASTM C 618-22. (2022). Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete (Vol. 04.02). American Society of Testing and Materials (ASTM).
  • ASTM C39-21. (2021). Standard test method for compressive strength of cylindrical concrete specimens (Vol. 04.02). American Society of Testing and Materials (ASTM).
  • ASTM C469-22. (2022). Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression (Vol. 04.02). American Society of Testing and Materials (ASTM).
  • Autef, A., Joussein, E., Gasgnier, G., & Rossignol, S. (2012). Role of the silica source on the geopolymerization rate. Journal of Non-Crystalline Solids, 358(21), 2886–2893. https://doi.org/10.1016/j.jnoncrysol.2012.07.015
  • Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254, 120147. https://doi.org/10.1016/j.jclepro.2020.120147
  • Bakar, R. A., Yahya, R., & Gan, S. N. (2015). Production of high purity amorphous silica from rice husk. In Proceedings of the 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP ). Universiti Sains Malaysia, Penang, Malaysia.
  • Bernal, S. A., Provis, J. L., Brice, D. G., Kilcullen, A., Duxson, P., & van Deventer, J. S. J. (2012). Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry. Cement and Concrete Research, 42(10), 1317–1326. https://doi.org/10.1016/j.cemconres.2012.07.002
  • Bernal, S. A., Provis, J. L., Rose, V., & Mejía de Gutierrez, R. (2011). Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites. 33(1), 46–54. https://doi.org/10.1016/j.cemconcomp.2010.09.004
  • Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., & Provis, J. L. (2015). Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales de Construcción, 65(318), e049-10. https://doi.org/10.3989/mc.2015.03114
  • Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., Provis, J. L., & Delvasto, S. (2012). Activation of metakaolin/slag blended alkaline solutions based on chemically modified silica fume and rice husk ash. Waste and Biomass Valorization, 3(1), 99–108. https://doi.org/10.1007/s12649-011-9093-3
  • Bondar, D. (2009). Alkali activation of iranian natural pozzolans for producing geopolymer cement and concrete [Ph.D thesis]. University of Sheffield.
  • Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., & Ramezanianpour, A. K. (2011). Engineering properties of alkali-activated natural pozzolan concrete. ACI Materials Journal. 108, 64–72.
  • BS EN 196-9. 2010. Methods of testing cement. Part 8. Heat of hydration. Semi-adiabatic method.
  • Buás de Lima, S. P., Pereira de Vasconcelos, R., Paiva, O. A., Cordeiro, G. C., Chaves, M. R., Filho, R. D. T., & Fairbairn, E. M. R. (2011). Production of silica gel from residual rice husk ash. Química Nova, 34(1), 71–75. https://doi.org/10.1590/S0100-40422011000100014
  • Castel, A., Foster, S. J., Ng, T., Sanjayan, J. G., & Gilbert, R. I. (2016). Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer concrete. Materials and Structures, 49(5), 1619–1628. https://doi.org/10.1617/s11527-015-0599-1
  • CEB-FIP model code. (1990). Comite Euro-International Du Beton p. 39.
  • Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., & Rattanasak, U. (2009). Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manage. (Oxford), 29(2), 539–543. https://doi.org/10.1016/j.wasman.2008.06.023
  • Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis. 37(8), 1633–1656. https://doi.org/10.1007/BF01912193
  • Davidovits, J. (2015). Geopolymer chemistry and application (4th ed., p. 585). Institute Geopolymer.
  • Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design, 62, 32–39. https://doi.org/10.1016/j.matdes.2014.05.001
  • Diaz-Loya, E. I., Allouche, F. N., & Vaidya, S. (2011). Mechanical properties of fly-ash based geopolymer concrete. ACI Materials Journal. 108, 300–306. https://doi.org/10.14359/51682495
  • Ding, Y., Dai, J. G., & Shi, C. J. (2016). Mechanical properties of alkali-activated concrete: A state-of-the-art review, Construction and Building Materials, 127, 68–79. https://doi.org/10.1016/j.conbuildmat.2016.09.121
  • Duan, P., Yan, C., Zhou, W., Luo, W., & Shen, C. (2015). An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure. Materials and Design. 74, 125–137. https://doi.org/10.1016/j.matdes.2015.03.009
  • EN-1992.1.1. (2004). Eurocode 2, design of concrete structures – part 1-1: General rules and rules for buildings, european committee for standardization. Belgium.
  • Fernandez-Jimenez, A. M., Palomo, A., & Lopez-Hombrados, C. (2006). Engineering properties of alkali activated fly ash concrete. ACI Materials Journal. 103, 106–112.
  • Fernández-Jiménez, A., & Palomo, A. (2003). Characterisation of fly ashes, potential reactivity as alkaline cements. Fuel, 82(18), 2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7
  • Fernandez-Jimenez, A., & Palomo, A. (2005). Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 35(10), 1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003
  • Gao, X., Yu, Q. L., & Brouwers, H. J. H. (2015). Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Construction and Building Materials. 80, 105–115. https://doi.org/10.1016/j.conbuildmat.2015.01.065
  • Hajimohammadi, A., & van Deventer, J. S. J. (2017). Solid reactant-based geopolymers from rice hull ash and sodium aluminate. Waste and Biomass Valorization, 8(6), 2131–2140. https://doi.org/10.1007/s12649-016-9735-6
  • Hamidi, R. M., Man, Z., Azizli, K. A., Ismail, L., & Nuruddin, M. F. (2014). Mechanical activation of fly ash by high energy planetary ball mill and the effects on physical and morphology properties. Applied Mechanics and Materials, 625, 38–41. https://doi.org/10.4028/www.scientific.net/AMM.625.38
  • Hardjito, D. (2005). Studies on fly ash-based geopolymer concrete [PhD thesis]. Curtin University of Technology.
  • Hardjito, D., & Rangan, B. V. 2005. Development and properties of low-calcium fly ash based geopolymer concrete . Research report GC-1 2005. Faculty of Engineering, Curtin University of Technology.
  • Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2005). Fly ash-based geopolymer concrete. Australian Journal of Structural Engineering. 6(1), 77–86. https://doi.org/10.1080/13287982.2005.11464946
  • He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites, Cement and Concrete Composites, 37, 108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
  • Islam, R., Montes, C., & Allouche, E. (2014). Correlation between chemical and phase composition of fly ash and mechanical properties of geopolymer concrete. International Journal of Environmental Engineering and Natural Resources, 1, 235–239.
  • J., Cardenas-Pulido, J. C., Reyes, J., Carrillo, J., & F., Ramirez. (2020). Shear behavior of geopolymer concrete panels under diagonal tensile stresses. Engineering Structures. 212, 110518. https://doi.org/10.1016/j.engstruct.2020.110518
  • Kamseu, E., Beleuk, A., Moungam, L. M., Cannio, M., Billong, N., Chaysuwan, D., Melo, U. C., & Leonelli, C. (2017). Substitution of sodium silicate with rice husk ash NaOH solution in metakaolin-based geopolymer cement concerning reduction in global warming. Journal of Cleaner Production, 142, 3050–3060. https://doi.org/10.1016/j.jclepro.2016.10.164
  • Kaur, K., Singh, J., & Kaur, M. (2018). Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator, Construction and Building Materials, 169, 188–192. https://doi.org/10.1016/j.conbuildmat.2018.02.200
  • Kovalchuk, G., Fernandez-Jimenez, A., & Palomo, A. (2007). Alkali-activated fly ash: effect of thermal curing conditions on mechanical and microstructural development- Part II. Fuel, 86(3), 315–322. https://doi.org/10.1016/j.fuel.2006.07.010
  • Kumar, S., Kumar, R., & Mehrotra, S. P. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. Journal of Materials Science, 45(3), 607–615. https://doi.org/10.1007/s10853-009-3934-5
  • Kumar, S., Kumar, R., Alex, T. C., Bandopadhyay, A., & Mehrotra, S. P. (2007). Influence of reactivity of fly ash on geopolymerisation, Advances in Applied Ceramics, 106(3), 120–127. https://doi.org/10.1179/174367607X159293
  • Lee, N. K., & Lee, H. K. (2013). Setting and mechanical properties of alkali activated fly ash/slag concrete manufactured at room temperature, Construction and Building Materials, 47, 1201–1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107
  • Liu, S., & Ott, W. K. (2020). Sodium silicate applications in oil, gas & geothermal well operations. Journal of Petroleum Science abd Engineering, 195, 107693. https://doi.org/10.1016/j.petrol.2020.107693
  • Lloyd, R. R., Provis, J. L., & Van Deventer, J. S. J. (2010). Pore solution composition and alkali diffusion in inorganic polymer cement. Cement and Concrete Research, 40(9), 1386–1392. https://doi.org/10.1016/j.cemconres.2010.04.008
  • Mejía, J. M., Mejía De Gutiérrez, R., & Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. Journal of Cleaner Production, 118, 133–139. https://doi.org/10.1016/j.jclepro.2016.01.057
  • Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Advances. 4(45), 23846–23852. https://doi.org/10.1039/C4RA03375B
  • Mendes, B. C., Pedroti, L. G., Vieira, C. M. F., Marvila, M., Azevedo, A. R. G., Franco de Carvalho, J. M., & Ribeiro, J. C. L. (2021). Application of eco-friendly alternative activators in alkali-activated materials: A review. Journal of Building Engineering, 35, 102010. https://doi.org/10.1016/j.jobe.2020.102010
  • Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (2nd ed., p. 644.). Person Education, Inc.
  • Mosaberpanah, M. A., & Umar, S. A. (2020). Utilizing rice husk ash as supplement to cementitious materials on performance of ultra high performance concrete: – A review. Materials Today Sustainility, 7–8, 100030. https://doi.org/10.1016/j.mtsust.2019.100030
  • Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials. 66, 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  • Nath, P., & Sarker, P. K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete, Construction and Building Materials, 130, 22–31. https://doi.org/10.1016/j.conbuildmat.2016.11.034
  • Neupane, K. (2016). Fly ash and GGBFS based powder-activated geopolymer binders: a viable sustainable alternative of Portland cement in concrete industry. Mechanics of Materials. 103, 110–122. https://doi.org/10.1016/j.mechmat.2016.09.012
  • Neville, A. M. (2004). Properties of concrete (4th ed., p. 860). Wiley.
  • Nguyen, K. T., Ahn, N., Lee, T. A., & Lee, K. (2016). Theoretical and experimental study on mechanical properties and flexural strength of fly ash geopolymer concrete, Construction and Building Materials, 106, 65–77. https://doi.org/10.1016/j.conbuildmat.2015.12.033
  • Noushini, A., Babaee, M., & Castel, A. (2016). Suitability of heat-cured low-calcium fly ash based geopolymer concrete for precast applications. Magazine of Concrete Research, 68(4), 163–177. https://doi.org/10.1680/macr.15.00065
  • Novotny, R., Hoff, A., & Schuertz, J. (1991). Process for hydrothermal production of sodium silicate solutions. United States Patent, 5,000, 933.
  • Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by taguchi method. Matererials and Design, 36, 191–198. https://doi.org/10.1016/j.matdes.2011.10.036
  • Onojah, A. D., Agbendeh, N. A., & Mbakaan, C. (2013). Rice husk ash refractory: The temperature dependent crystalline phase aspects. IJRRAS, 15, 246–248.
  • Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0
  • Pan, Z., Sanjayan, J. G., & Rangan, B. V. (2011). Fracture properties of geopolymer paste and concrete. Magazine of Concrete Research, 63(10), 763–771. https://doi.org/10.1680/macr.2011.63.10.763
  • Passuello, A., Rodriguez, E. D., Hirt, E., Longhi, M., Bernal, S. A., Provis, J. L., & Kirchheim, A. P. (2017). Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. Journal of Cleaner Production, 166, 680–689. https://doi.org/10.1016/j.jclepro.2017.08.007
  • Paya, J., Monzo, J., Borrachero, M., Peris-Mora, E., & González-López, E. (1996). Mechanical treatment of fly ashes part II: Particle morphologies in ground fly ashes (GFA) and workability of GFA-cement mortars. Cement and Concrete Research. 26(2), 225–235. https://doi.org/10.1016/0008-8846(95)00212-X
  • Prachasaree, W., Limkatanyu, S., Hawa, A., & Samakrattakit, A. (2014). Development of equivalent stress block parameters for fly-ash-based geopolymer concrete. Arabian Journal for Science and Engineering, 39(12), 8549–8558. https://doi.org/10.1007/s13369-014-1447-2
  • Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2005). Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chemistry of Materials, 17(12), 3075–3085. https://doi.org/10.1021/cm050230i
  • Puligilla, S., & Mondal, P. (2013). Role of slag in microstructural development and hardening of fly ash slag geopolymer. Cement and Concrete Research, 43, 70–80. https://doi.org/10.1016/j.cemconres.2012.10.004
  • Puligilla, S., & Mondal, P. (2015). Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cement and Concrete Research. 70, 39–49. https://doi.org/10.1016/j.cemconres.2015.01.006
  • Rajamma, R., Labrincha, J. A., & Ferreira, V. M. (2012). Alkali activation of biomass fly ash–metakaolin blends. Fuel, 98, 265–271. https://doi.org/10.1016/j.fuel.2012.04.006
  • Rajan, H. S., & Kathirvel, P. (2021). Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste. Journal of Cleaner Production, 286, 124959. https://doi.org/10.1016/j.jclepro.2020.124959
  • Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Mining Engineering, 22, 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022
  • Ravikumar, D., & Neithalath, N. (2012). Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochimica Acta, 546, 32–43. https://doi.org/10.1016/j.tca.2012.07.010
  • Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Construction and Building Materials, 47, 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069
  • Singh, B., Rahman, R. M., Paswan, R., & Battacharyya, S. K. (2016). Effect of activator concentration on the strength. ITZ and Drying Shrinkage of Fly Ash/Slag Geopolymer Concrete, Construction and Building Materials, 118, 171–179. https://doi.org/10.1016/j.conbuildmat.2016.05.008
  • Škvára, F., Kopecký, L., Šmilauer, V., & Bittnar, Z. (2009). Material and structural characterization of alkali activated low-calcium brown coal fly ash. Journal of Hazardous Materials, 168(2-3), 711–720. https://doi.org/10.1016/j.jhazmat.2009.02.089
  • Škvara, F., Pavlasova, S., Kopecký, L., Myškova, L., & Alberovska, L. (2008). High temperature properties of fly ash-based geopolymers. In Proceedings of the 3rd international symposium on nontraditional Cement and Concrete, Bílek and Keršner (pp. 741–750).
  • Škvára, F., Šmilauer, V., Hlaváček, P., Kopecký, L., & Cílová, Z. (2012). A weak alkali bond in (N, K)–A–S–H gels: Evidence from leaching and modeling. Ceramics-Silikáty, 56, 374–382.
  • Sofi, M., van Deventer, J. S. J., Mendis, P. A., & Lukey, G. C. (2007). Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, 37(2), 251–257. https://doi.org/10.1016/j.cemconres.2006.10.008
  • Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P. (2011). NaOH activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90(6), 2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018
  • Talling, B., & Brandstetr, J. (1989). Present state and future of alkali-activated slag concretes. In Proceedings of the Third International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete. American Concrete Institute, Trondheim, Norway.
  • Tchakouté, H. K., & Rüscher, C. H. (2017). Metakaolin-based geopolymer cements from commercial sodium waterglass and sodium waterglass from rice husk ash: A comparative study. In Developments in Strategic Ceramic Materials II, 1st (p. 296). John Wiley & Sons.
  • Tchakouté, H. K., Rüscher, C. H., Kong, S., & Ranjbar, N. (2016). Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. Journal of Building Engineering, 6, 252–261. https://doi.org/10.1016/j.jobe.2016.04.007
  • Tchakouté, H. K., Rüscher, C. H., Kong, S., Kamseu, E., & Leonelli, C. (2016). Comparison of metakaolin-based geopolymer cements from commercial sodium waterglass and sodium waterglass from rice husk ash. Journal of Sol-Gel Science and Technology, 78(3), 492–506. https://doi.org/10.1007/s10971-016-3983-6
  • Technical Data sheet Panreac PA-ACS-ISO. (2020). PANREAC QUÍMICA S.L.U. España.
  • Tempest, B. (2010). Engineering characterization of waste derived geopolymer cement concrete for structural applications [PhD thesis]. The University of North Carolina at Charlotte.
  • Temuujin, J., & van Riessen, A. (2009). Effect of fly ash preliminary calcination on the properties of geopolymer. Journal of Hazardous Materials. 164(2-3), 634–639. https://doi.org/10.1016/j.jhazmat.2008.08.065
  • Temuujin, J., van Riessen, A., & Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials. 167(1–3), 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121
  • Thomas, R. J., & Peethamparan, S. (2015). Alkali-activated concrete: Engineering properties and stress-strain behavior, Construction and Building Materials, 93, 49–56. https://doi.org/10.1016/j.conbuildmat.2015.04.039
  • Tong, K. T., Vinai, R., & Soutsos, M. N. (2018). Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. Journal of Cleaner Production, 201, 272–286. https://doi.org/10.1016/j.jclepro.2018.08.025
  • Tsen, T. J., Zeimaran, E., & Soutsos, M. (2019). Rice husk ash derived sodium silicate using hydrothermal and convection heating methods. In Proceedings of the AWAM International Conference on Civil Engineering 2019 - AICCE’19.
  • Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Construction and Building Materials. 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023
  • van Jaarsveld, J. S. G., van Deventer, J. S. J., & Lorenzen, L. (1998). Factors affecting the immobilization of metals in geopolymerized fly ash. Metallurgical and Materials Transactions B, 29(1), 283–291. https://doi.org/10.1007/s11663-998-0032-z
  • Velandia, D. F., Lynsdale, C. J., Provis, J. L., Ramirez, F., & Gomez, A. C. (2016). Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes. Construction and Building Materials. 128, 248–255. https://doi.org/10.1016/j.conbuildmat.2016.10.076
  • Villaquirán-Caicedo, M. A., Mejía de Gutierrez, R., & Gallego, N. C. (2017). A novel Mk-based geopolymer composite activated with rice husk ash and KOH: Performance at high temperature. Materiales de Construcción, 67(326), 117. https://doi.org/10.3989/mc.2017.02316
  • Winnefeld, F., Leemann, A., Lucuk, M., Svoboda, P., & Neuroth, M. (2010). Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials, Construction and Building Materials, 24(6), 1086–1093. https://doi.org/10.1016/j.conbuildmat.2009.11.007
  • Xu, H., Gong, W. L., Syltebo, L., Izzo, K., Lutze, W., & Pegg, I. L. (2014). Effect of blast furnace slag grades on y ash based geopolymer waste forms. Fuel, 133, 332–340. https://doi.org/10.1016/j.fuel.2014.05.018
  • Yang, K.-H., Cho, A.-R., & Song, J.-K. (2012). Effect of water–binder ratio on the mechanical properties of calcium hydroxide-based alkali-activated slag concrete. Construction and Building Materials. 29, 504–511. https://doi.org/10.1016/j.conbuildmat.2011.10.062
  • Yaseri, S., Verki, V. M., & Mahdikhani, M. (2019). Utilization of high volume cement kiln dust and rice husk ash in the production of sustainable geopolymer. Journal of Cleaner Production, 230, 592–602. https://doi.org/10.1016/j.jclepro.2019.05.056
  • Zhang, Z. H., Yang, T., & Wang, H. (2014). The effect of efflorescence on the mechanical properties of fly ash-based geopolymer binders. In Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23) , S.T. Smith, Byron Bay, NSW (pp. 107–112).
  • Zou, Y., & Yang, T. (2019). Chapter 9 – Rice husk, rice husk ash and their applications. In Rice bran and rice bran oil chemistry, processing and utilization (1st ed., p. 315). Academic Press.