155
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Strength development and microstructure properties of slag activated with alkaline earth metal ions: a review study

&
Pages 4497-4527 | Received 09 Dec 2022, Accepted 17 Mar 2023, Published online: 04 Apr 2023

References

  • Anand, S., Vrat, P., & Dahiya, R. P. (2006). Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. Journal of Environmental Management, 79, 383–398.
  • Ashok, R. B., Srinivasa, C. V., & Basavaraju, B. (2020). Study on morphology and mechanical behavior of areca leaf sheath reinforced epoxy composites. Advanced Composites & Hybrid Materials, 3, 1–10.
  • Atis, C. D. (2004). Carbonation–porosity–strength model for fly ash concrete. Journal of Materials in Civil Engineering, 16, 91–94.
  • Bahmani, H., & Mostofinejad, D. (2022). Microstructure of ultra-high performance concrete (UHPC): A review study. Journal of Building Engineering, 50, 104118.
  • Bahmani, H., & Mostofinejad, D. (2023). A review of engineering properties of ultra-high-performance geopolymer concrete. Developments in the Built Environment, 14, 100126.
  • Bahmani, H., Mostofinejad, D., & Dadvar, S. A. (2020a). Mechanical properties of ultra-high performance fiber-reinforced concrete containing synthetic and mineral fibers. ACI Materials Journal, 117(3), 04020361.
  • Bahmani, H., Mostofinejad, D., & Dadvar, S. A. (2020b). Effects of synthetic fibers and different levels of partial cement replacement on mechanical properties of UHPFRC. Journal of Materials in Civil Engineering, 32(12), 04020361.
  • Bahmani, H., Mostofinejad, D., & Dadvar, S. A. (2022). Fiber type and curing environment effects on the mechanical performance of UHPFRC containing zeolite. Iranian Journal of Science & Technology, Transactions of Civil Engineering, 46, 4151–4167.
  • Bakolas, A., Aggelakopoulou, E., Moropoulou, A., & Anagnostopoulou, S. (2006). Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin–lime pastes. Journal of Thermal Analysis & Calorimetry, 84, 157–163.
  • Bakharev, T., Sanjayan, J., & Cheng, Y.-B. (2001). Resistance of alkali-activated slag concrete to carbonation. Cement & Concrete Research, 31, 1277–1283.
  • Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2002). Sulfate attack on alkali-activated slag concrete. Cement & Concrete Research, 32, 211–216.
  • Bakharev, T., Sanjayan, J., & Cheng, Y.-B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement & Concrete Research, 33(10), 1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X
  • Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (1999). Alkali activation of Australian slag cements. Cement & Concrete Research, 29, 113–120.
  • Bernal, S. A., San Nicolas, R., Myers, R. J., de Gutiérrez, R. M., Puertas, F., van Deventer, J. S., & Provis, J. L. (2014). MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cement & Concrete Research, 57, 33–43. https://doi.org/10.1016/j.cemconres.2013.12.003
  • Ben Haha, M., Lothenbach, B., L., Saout, G., & Winnefeld, F. (2012). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-part II: Effect of Al2O3. Cement & Concrete Research, 42(1), 74–83. https://doi.org/10.1016/j.cemconres.2011.08.005
  • Ben Haha, M., Lothenbach, B., L., Saout, G., & Winnefeld, F. (2011). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: Effect of MgO. Cement & Concrete Research, 41(9), 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002
  • Ben Haha, M., Le Saout, G., Winnefeld, F., & Lothenbach, B. (2011). Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali-activated blast-furnace slags. Cement & Concrete Research, 41(3), 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016
  • Bhatty, J. (1991). A review of the application of thermal analysis to cement–admixture systems. Thermochimica Acta, 189(2), 313–350. https://doi.org/10.1016/0040-6031(91)87128-J
  • Brough, A. R., & Atkinson, A. (2000). Automated identification of the aggregate–paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste. Cement & Concrete Research, 30(6), 849–854. https://doi.org/10.1016/S0008-8846(00)00254-4
  • Brough, A. R., & Atkinson, A. (2002). Sodium silicate-based alkali-activated slag mortars. Part I. Strength, hydration and microstructure. Cement & Concrete Research, 32(6), 865–879. https://doi.org/10.1016/S0008-8846(02)00717-2
  • Burciaga-Díaz, O., & Betancourt-Castillo, I. (2018). Characterization of novel blast furnace slag cement pastes and mortars activated with a reactive mixture of MgO-NaOH. Cement & Concrete Research, 105, 54–63. https://doi.org/10.1016/j.cemconres.2018.01.002
  • Carmona-Quiroga, P. M., & Blanco-Varela, M. T. (2013). Ettringite decomposition in the presence of barium carbonate. Cement & Concrete Research, 52, 140–e148. https://doi.org/10.1016/j.cemconres.2013.05.021
  • Cho, J., Lee, S.-K., Eem, S.-H., Jang, J. G., & Yang, B. (2019). Enhanced mechanical and thermal properties of carbon fiber-reinforced thermoplastic polyketone composites. Composites – Part A: Applied Science & Manufacturing, 126, 105599. https://doi.org/10.1016/j.compositesa.2019.105599
  • Cheah, C. B., Tan, L. E., & Ramli, M. (2021). Recent advances in slag-based binder and chemical activators derived from industrial by-products – A review. Construction & Building Materials, 272, 121657. https://doi.org/10.1016/j.conbuildmat.2020.121657
  • Collins, F. G., & Sanjayan, J. G. (1999). Workability and mechanical properties of alkali-activated slag concrete. Cement & Concrete Research, 29, 455–458.
  • Djayaprabha, H. S., Chang, T.-P., Shih, J.-Y., & Chen, C.-T. (2017). Mechanical properties and microstructural analysis of slag-based cementitious binder with calcined dolomite as an activator. Construction & Building Materials, 150, 345–354. https://doi.org/10.1016/j.conbuildmat.2017.05.221
  • Escalante-García, J. I., Fuentes, A. F., Gorokhovsky, A., Fraire-Luna, P. E., & Mendoza-Suarez, G. (2003). Hydration products and reactivity of blast-furnace slag activated by various alkalis. Journal of the American Ceramic Society, 86(12), 2148–2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x
  • Fernandez, L., Alonso, C., Hidalgo, A., & Andrade, C. (2005). The role of magnesium during the hydration of C3S and C–S–H formation. Scanning electron microscopy and mid-infrared studies. Advances in Cement Research, 17(1), 9–21. https://doi.org/10.1680/adcr.2005.17.1.9
  • Fernández-Jiménez, A., Palomo, J., & Puertas, F. (1999). Alkali-activated slag mortars: Mechanical strength behavior. Cement & Concrete Research, 29(8), 1313–1321. https://doi.org/10.1016/S0008-8846(99)00154-4
  • Gong, C., & Yang, N. (2000). Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material. Cement & Concrete Research, 30(7), 1013–1016. https://doi.org/10.1016/S0008-8846(00)00260-X
  • Gu, K. (2014). Experimental study on engineering properties of MgO–CaO mixtures activated ground granulated blast furnace slag [PhD thesis]. Nanjing University.
  • Gu, K., Jin, F., Al-Tabbaa, A., Shi, B., & Liu, J. (2014a). Mechanical and hydration properties of ground granulated blast furnace slag pastes activated with MgO–CaO mixtures. Construction & Building Materials, 69, 101–108. https://doi.org/10.1016/j.conbuildmat.2014.07.032
  • Gu, K., Jin, F., Al-Tabbaa, A., & Shi, B. (2014b). Activation of ground granulated blast furnace slag by using calcined dolomite. Construction & Building Materials, 68, 252–258. https://doi.org/10.1016/j.conbuildmat.2014.06.044
  • Gu, K., Jin, F., Al-Tabbaa, A., Shi, B., & Tang, C. (2016). Evaluation of sulfate resistance of calcined dolomite activated ground granulated blast furnace slag. Journal of Materials in Civil Engineering, 28(2), 04015135. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001392
  • Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Münch, B., Figi, R., Ko, S.-C., Adler, M., & Mäder, U. (2011). Quantification of hydration phases in super sulfated cements: Review and new approaches. Advances in Cement Research, 23(6), 265–275. https://doi.org/10.1680/adcr.2011.23.6.265
  • Jeong, Y., Oh, J. E., Jun, Y., Park, J., Ha, J.-H., & Sohn, S. G. (2016a). Influence of four additional activators on hydrated-lime [Ca (OH)2] activated ground granulated blast furnace slag. Cement & Concrete Composites, 65, 1–10. https://doi.org/10.1016/j.cemconcomp.2015.10.007
  • Jeong, Y. (2016b). Mechanical performance and microstructure of alkaline earth activated slag, cements. Department of Urban and Environmental Engineering, Thesis.
  • Jeon, D., Jun, Y., Jeong, Y., & Oh, J. E. (2015). Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system. Cement & Concrete Research, 67, 215–225. https://doi.org/10.1016/j.cemconres.2014.10.001
  • Jeong, Y., Yum, W. S., Jeon, D., & Oh, J. E. (2017). Strength development and microstructural characteristics of barium hydroxide-activated ground granulated blast furnace slag. Cement & Concrete Composites, 79, 34–44. https://doi.org/10.1016/j.cemconcomp.2017.01.013
  • Jeong, Y., Kang, S.-H., Du, Y., & Moon, J. (2019). Local Ca-structure variation and microstructural characteristics on one-part activated slag system with various activators. Cement & Concrete Composites, 102, 1–13. https://doi.org/10.1016/j.cemconcomp.2019.04.009
  • Jin, F., & Al-Tabbaa, A. (2013). Thermogravimetric study on the hydration of reactive MgO and silica mixture at room temperature. Thermochimica Acta, 566, 162–168. https://doi.org/10.1016/j.tca.2013.05.036
  • Jin, F., Gu, K., & Al-Tabbaa, A. (2014). Strength and drying shrinkage of reactive MgO-modified alkali-activated slag paste. Construction & Building Materials, 51, 395–404. https://doi.org/10.1016/j.conbuildmat.2013.10.081
  • Jin, F., Gu, K., & Al-Tabbaa, A. (2015). Strength and hydration properties of reactive MgO-activated ground granulated blast furnace slag paste. Cement & Concrete Composites, 57, 8–16. https://doi.org/10.1016/j.cemconcomp.2014.10.007
  • Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement & Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012
  • Ke, X., Bernal, S. A., & Provis, J. L. (2017). Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement. Cement & Concrete Research, 100, 1–13. https://doi.org/10.1016/j.cemconres.2017.05.015
  • Khan, A. I., & O’Hare, D. (2002). Intercalation chemistry of layered double hydroxides: Recent developments and applications. Journal of Materials Chemistry, 12(11), 3191–3198. https://doi.org/10.1039/B204076J
  • Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement & Concrete Research, 54, 208–214. https://doi.org/10.1016/j.cemconres.2013.09.011
  • Kunther, W., Lothenbach, B., & Skibsted, J. R. (2015). Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cement & Concrete Research, 69, 37–49. https://doi.org/10.1016/j.cemconres.2014.12.002
  • Lambert, I., & Clever, H. L. (2013). Alkaline earth hydroxides in water and aqueous solutions. Elsevier.
  • Li, W., & Yi, Y. (2020). Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag. Construction & Building Materials, 238, 117713. https://doi.org/10.1016/j.conbuildmat.2019.117713
  • Liu, Q., Yang, C., Lyu, X., Chen, P., You, X., Li, L., & Wang, J. (2021). Evolution of ettringite content and its effects on hydration properties of CaO/fluor-gypsum-activated granulated blast furnace slag binders. Advanced Composites & Hybrid Materials, 4(2), 350–359. https://doi.org/10.1007/s42114-021-00203-6
  • Lothenbach, B., Le Saout, G., Gallucci, E., & Scrivener, K. (2008). Influence of limestone on the hydration of Portland cements. Cement & Concrete Research, 38(6), 848–860. https://doi.org/10.1016/j.cemconres.2008.01.002
  • MacKenzie, K. J., Meinhold, R. H., Sherriff, B. L., & Xu, Z. (1993). 27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. Journal of Materials Chemistry, 3(12), 1263–1269. https://doi.org/10.1039/jm9930301263
  • Maciejewski, M., Oswald, H.-R., & Reller, A. (1994). Thermal transformations of vaterite and calcite. Thermochimica Acta, 234, 315–328. https://doi.org/10.1016/0040-6031(94)85155-7
  • Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties, and materials. McGraw-Hill.
  • Myers, R. J., Bernal, S. A., & Provis, J. L. (2017). Phase diagrams for alkali-activated slag binders. Cement & Concrete Research, 95, 30–38. https://doi.org/10.1016/j.cemconres.2017.02.006
  • Mobasher, N., Bernal, S. A., Hussain, O. H., Apperley, D. C., Kinoshita, H., & Provis, J. L. (2014). Characterization of Ba(OH)2-Na2SO4-blast furnace slag cement-like composites for the immobilization of sulfate-bearing nuclear wastes. Cement & Concrete Research, 66, 64–74.
  • Mobasher, N., Kinoshita, H., Bernal, S. A., & Sharrard, C. A. (2014). Ba(OH)2 e blast furnace slag composite binders for encapsulation of sulphate bearing nuclear waste. Advances in Applied Ceramics, 113(8), 460–465. https://doi.org/10.1179/1743676114Y.0000000148
  • Neville, A. M. (1995). Properties of concrete. Longman.
  • Ngala, V., & Page, C. (1997). Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cement & Concrete Research, 27(7), 995–1007. https://doi.org/10.1016/S0008-8846(97)00102-6
  • Oh, J. E., Monteiro, P. J. M., Jun, S. S., Choi, S., & Clark, S. M. (2010). The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement & Concrete Research, 40(2), 189–196. https://doi.org/10.1016/j.cemconres.2009.10.010
  • Park, S., Park, H. M., Yoon, H. N., Seo, J., Yang, C.-M., Provis, J. L., & Yang, B. (2020). Hydration kinetics and products of MgO-activated blast furnace slag. Construction & Building Materials, 249, 118700. https://doi.org/10.1016/j.conbuildmat.2020.118700
  • Park, S., Jang, J., & Lee, H. (2018). Unlocking the role of MgO in the carbonation of alkali-activated slag cement. Inorganic Chemistry Frontiers, 5(7), 1661–1670. https://doi.org/10.1039/C7QI00754J
  • Park, H., Jeong, Y., Jeong, J.-H., & Oh, J. E. (2016a). Strength development and hydration behavior of self-activation of commercial ground granulated blast-furnace slag mixed with purified water. Materials, 9(3), 185. https://doi.org/10.3390/ma9030185
  • Park, H., Jeong, Y., Jun, Y., & Oh, J. E. (2016b). Production of price-competitive bricks using a high volume of stone powder sludge waste and blast furnace slag through cementless CaO activation. Construction & Building Materials, 122, 343–353. https://doi.org/10.1016/j.conbuildmat.2016.06.088
  • Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Investigations on mix design of tungsten mine waste geopolymeric binder. Construction & Building Materials, 22(9), 1939–1949. https://doi.org/10.1016/j.conbuildmat.2007.07.015
  • Park, H., Jeong, Y., Jun, Y., Jeong, J. H., & Oh, J. E. (2016). Strength enhancement and pore-size refinement in clinker-free CaO activated GGBFS systems through substitution with gypsum. Cement & Concrete Composites, 68, 57–65. https://doi.org/10.1016/j.cemconcomp.2016.02.008
  • Provis, J. L., & Deventer, J. S. J. (2014). Alkali activated materials: state-of-the-art report. RILEM TC 224-AAM. Springer.
  • Rashad, A. M. (2013). A comprehensive overview about the influence of different additives on the properties of alkali-activated slag: A guide for civil engineers. Construction & Building Materials, 47, 29–55. https://doi.org/10.1016/j.conbuildmat.2013.04.011
  • Richardson, I. G., & Groves, G. W. (1992). Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag. Journal of Materials Science, 27(22), 6204–6212. https://doi.org/10.1007/BF01133772
  • Richardson, J. M., Biernacki, J., Stutzman, P. E., & Bentz, D. P. (2004). Stoichiometry of slag hydration with calcium hydroxide. Journal of the American Ceramic Society, 85(4), 947–953. https://doi.org/10.1111/j.1151-2916.2002.tb00197.x
  • Roy, D., Jiang, W., & Silsbee, M. (2000). Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cement & Concrete Research, 30,1879–1884.
  • Santacruz, I., Torre, Á., Álvarez-Pinazo, G., Cabeza, A., Cuesta, A., Sanz, J., & Aranda, M. A. G. (2016). Structure of stratlingite and effect of hydration methodology on microstructure. Advances in Cement Research, 28(1), 13–22. https://doi.org/10.1680/adcr.14.00104
  • Shigeo, M., & Teruhiko, K. (1973). Synthesis of new hydrotalcite-like compounds and their physico-chemical properties. Chemistry Letters, 2(8), 843–848.
  • Shi, C., & Day, R. L. (1995). Chemical activation of lime-slag blends (vol. 153, pp. 1165–1177). ACI Special Publication.
  • Shi, C., Krivenko, P. V., & Roy, D. M. (2006). Alkali-activated cements and concrete. CRC PressI Llc.
  • Shi, C., & Xie, P. (1998). Interface between cement paste and quartz sand in alkali-activated slag mortars. Cement & Concrete Research, 28(6), 887–896. https://doi.org/10.1016/S0008-8846(98)00050-7
  • Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement & Concrete Research, 29(2), 159–170. https://doi.org/10.1016/S0008-8846(98)00212-9
  • Song, S., Sohn, D., Jennings, H. M., & Mason, T. O. (2000). Hydration of alkali-activated ground granulated blast furnace slag. Journal of Materials Science, 35(1), 249–257. https://doi.org/10.1023/A:1004742027117
  • Taylor, H. F. W. (1997). Cement chemistry, 2nd ed. Thomas Telford Services Ltd.
  • Theiss, F. L., Ayoko, G. A., & Frost, R. L. (2013). Thermogravimetric analysis of selected layered double hydroxides. Journal of Thermal Analysis & Calorimetry, 112(2), 649–657. https://doi.org/10.1007/s10973-012-2584-z
  • Trittschack, R., Grobéty, B., & Brodard, P. (2014). Kinetics of the chrysotile and brucite dehydroxylation reaction: A combined non-isothermal/isothermal thermogravimetric analysis and high-temperature X-ray powder diffraction study. Physics & Chemistry of Minerals, 41(3), 197–214. https://doi.org/10.1007/s00269-013-0638-9
  • Van Jaarsveld, J., Van Deventer, J., & Lorenzen, L. (1997). The potential use of geopolymeric materials to immobilise toxic metals: Part I. Minerals Engineering, 10(7), 659–669. https://doi.org/10.1016/S0892-6875(97)00046-0
  • Wang, S. D., Pu, X. C., Scrivener, K. L., & Pratt, P. L. (1995). Alkali-activated slag cement and concrete: A review of properties and problems. Advances in Cement Research, 7(27), 93–102. https://doi.org/10.1680/adcr.1995.7.27.93
  • Wang, S. D., & Scrivener, K. L. (1995). Hydration products of alkali-activated slag cement. Cement & Concrete Research, 25(3), 561–571. https://doi.org/10.1016/0008-8846(95)00045-E
  • Yang, K.-H., Song, J.-K., Ashour, A. F., & Lee, E.-T. (2008). Properties of cementless mortars activated by sodium silicate. Construction & Building Materials, 22(9), 1981–1989. https://doi.org/10.1016/j.conbuildmat.2007.07.003
  • Yang, K.-H., Cho, A.-R., Song, J.-K., & Nam, S.-H. (2012). Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Construction & Building Materials, 29, 410–419. https://doi.org/10.1016/j.conbuildmat.2011.10.063
  • Yang, K. H., Sim, J. I., & Nam, S. H. (2010). Enhancement of reactivity of calcium hydroxide-activated slag mortars by the addition of barium hydroxide. Construction & Building Materials, 24(3), 241–251. https://doi.org/10.1016/j.conbuildmat.2009.09.001
  • Yi, Y., Zheng, X., Liu, S., & Al-Tabbaa, A. (2015). Comparison of reactive magnesia-and carbide slag-activated ground granulated blast furnace slag and Portland cement for stabilization of natural soil. Applied Clay Science, 111, 21–26. https://doi.org/10.1016/j.clay.2015.03.023
  • Yi, Y., Liska, M., & Al-Tabbaa, A. (2014). Properties and microstructure of GGBS–magnesia pastes. Advances in Cement Research, 26(2), 114–122. https://doi.org/10.1680/adcr.13.00005
  • Yoon, H., Park, S., & Lee, H. (2018). Effect of MgO on chloride penetration resistance of alkali-activated binder. Construction & Building Materials, 178, 584–592. https://doi.org/10.1016/j.conbuildmat.2018.05.156
  • Yum, W. S., Jeong, Y., Song, H., & Oh, J. E. (2018). Recycling of limestone fines using Ca (OH)2-and Ba (OH)2-activated slag systems for eco-friendly concrete brick production. Construction & Building Materials, 185, 275–284. https://doi.org/10.1016/j.conbuildmat.2018.07.112
  • Zhang, T., Cheeseman, C. R., & Vandeperre, L. J. (2011). Development of low pH cement systems forming magnesium silicate hydrate (MSH). Cement & Concrete Research, 41(4), 439–442. https://doi.org/10.1016/j.cemconres.2011.01.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.