106
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Mechanical characterization of flax textile reinforced cement matrix: effect of matrix parameters and reinforcement amount

, ORCID Icon, &
Pages 4528-4543 | Received 20 Sep 2022, Accepted 17 Mar 2023, Published online: 28 Mar 2023

References

  • Ardanuy, M., Claramunt, J., & Toledo Filho, R. D. (2015). Cellulosic fiber reinforced cement-based composites : A review of recent research. Construction and Building Materials, 79, 115–128. https://doi.org/10.1016/j.conbuildmat.2015.01.035
  • Awani, O., El-Maaddawy, T., & Ismail, N. (2017). Fabric-reinforced cementitious matrix : A promising strengthening technique for concrete structures. Construction and Building Materials, 132, 94–111. https://doi.org/10.1016/j.conbuildmat.2016.11.125
  • Bcomp_ampliTex_5019.pdf. (n.d.). Consulté 19 janvier 2023, à l’adresse https://www.swiss-composite.ch/pdf/t-Flachs-powerRibs_5019.pdf
  • Codispoti, R., Oliveira, D. V., Olivito, R. S., Lourenço, P. B., & Fangueiro, R. (2015). Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. Composites Part B: Engineering, 77, 74–83. https://doi.org/10.1016/j.compositesb.2015.03.021
  • Colombo, I. G., Magri, A., Zani, G., Colombo, M., & di Prisco, M. (2013). Erratum to: Textile reinforced concrete: experimental investigation on design parameters. Materials and Structures, 46(11), 1953–1971. https://doi.org/10.1617/s11527-013-0023-7
  • Contamine, R., Si Larbi, A., & Hamelin, P. (2011). Contribution to direct tensile testing of textile reinforced concrete (TRC) composites. Materials Science and Engineering: A, 528(29–30), 8589–8598. https://doi.org/10.1016/j.msea.2011.08.009
  • de Felice, G., De Santis, S., Garmendia, L., Ghiassi, B., Larrinaga, P., Lourenço, P. B., Oliveira, D. V., Paolacci, F., & Papanicolaou, C. G. (2014). Mortar-based systems for externally bonded strengthening of masonry. Materials and Structures, 47(12), 2021–2037. https://doi.org/10.1617/s11527-014-0360-1
  • Dittenber, D. B., & GangaRao, H. V. S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8), 1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019
  • Donnini, J., Corinaldesi, V., & Nanni, A. (2016). Mechanical properties of FRCM using carbon fabrics with different coating treatments. Composites Part B: Engineering, 88, 220–228. https://doi.org/10.1016/j.compositesb.2015.11.012
  • Fds_ciment_prompt_vicat.pdf. (n.d.). Consulté 19 janvier 2023, à l’adresse. https://www.ciffreobona.fr/userfiles/file/PDF/4/147/286/1827/fds_ciment_prompt_vicat.pdf
  • Ferrara, L., Ferreira, S. R., Krelani, V., Lima, P., Silva, F., & Filho, R. D. T. (2017). Cementitious composites reinforced with natural fibres. In J. A. O. Barros, L. Ferrara, & E. Martinelli (Éds.), Recent advances on green concrete for structural purposes (pp. 197–331). Springer International Publishing. https://doi.org/10.1007/978-3-319-56797-6_9
  • Ferrara, G., Pepe, M., Martinelli, E., & Tolêdo Filho, R. D. (2021). Tensile behavior of flax textile reinforced lime-mortar : Influence of reinforcement amount and textile impregnation. Cement and Concrete Composites, 119, 103984. https://doi.org/10.1016/j.cemconcomp.2021.103984
  • Fidelis, M. E. A., de Andrade Silva, F., & Toledo Filho, R. D. (2014). The influence of fiber treatment on the mechanical behavior of jute textile reinforced concrete. Key Engineering Materials, 600, 469–474. https://doi.org/10.4028/www.scientific.net/KEM.600.469
  • Focacci, F., D’Antino, T., & Carloni, C. (2022). Tensile testing of FRCM coupons for material characterization: Discussion of critical aspects. Journal of Composites for Construction, 26(4), 04022039. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001223
  • Focacci, F., D'Antino, T., & Carloni, C. (2020). The role of the fiber–matrix interfacial properties on the tensile behavior of FRCM coupons. Construction and Building Materials, 265, 120263. https://doi.org/10.1016/j.conbuildmat.2020.120263
  • Giese, A. C. H., Giese, D. N., Dutra, V. F. P., & Da Silva Filho, L. C. P. (2021). Flexural behavior of reinforced concrete beams strengthened with textile reinforced mortar. Journal of Building Engineering, 33, 101873. https://doi.org/10.1016/j.jobe.2020.101873
  • Gries, T., Roye, A., Offermann, P., & Peled, A. (2006). Textile reinforced concrete-state-of-the-art report of RILEM TC 201-TRC. Report, Aachen, France, Autumn.
  • Homoro, O., Baranger, T., & Michel, M. (2021). 3D finite element modeling of yarn reinforced mineral matrix : Comparison of damage behavior with experimental data. Composite Structures, 261, 113567. https://doi.org/10.1016/j.compstruct.2021.113567
  • Homoro, O., Michel, M., & Baranger, T. N. (2019). Pull-out response of glass yarn from ettringite matrix : Effect of pre-impregnation and embedded length. Composites Science and Technology, 170, 174–182. https://doi.org/10.1016/j.compscitech.2018.11.045
  • Homoro, O., Michel, M., & Baranger, T. N. (2020). Dry mineral pre-impregnation for enhancing the properties of glass FRCM composites. Construction and Building Materials, 263, 120597. https://doi.org/10.1016/j.conbuildmat.2020.120597
  • Homoro, O., Michel, M., & Baranger, T. N. (2022). Improvement of the mechanical properties of a glass multifilament yarn reinforced ettringitic matrix using an innovative pre-impregnation process. European Journal of Environmental and Civil Engineering, 26(5), 1977–1992. https://doi.org/10.1080/19648189.2020.1744038
  • Kong, K., Mesticou, Z., Michel, M., Si Larbi, A., & Junes, A. (2017). Comparative characterization of the durability behaviour of textile-reinforced concrete (TRC) under tension and bending. Composite Structures, 179, 107–123. https://doi.org/10.1016/j.compstruct.2017.07.030
  • Liebolt, M., Butler, M., & Mechtcherine, V. (2008). Application of textile reinforced concrete in prefabrication. BEFIB 2008: 7th RILEM International Symposium on Fibre Reinforced Concrete, 253–262.
  • Majstorović, F., Sebera, V., Mrak, M., Dolenec, S., Wolf, M., & Marrot, L. (2022). Impact of metakaolin on mechanical performance of flax textile-reinforced cement-based composites. Cement and Concrete Composites, 126, 104367. https://doi.org/10.1016/j.cemconcomp.2021.104367
  • Menna, C., Asprone, D., Durante, M., Zinno, A., Balsamo, A., & Prota, A. (2015). Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Construction and Building Materials, 100, 111–121. https://doi.org/10.1016/j.conbuildmat.2015.09.051
  • Mercedes, L., Gil, L., & Bernat-Maso, E. (2018). Mechanical performance of vegetal fabric reinforced cementitious matrix (FRCM) composites. Construction and Building Materials, 175, 161–173. https://doi.org/10.1016/j.conbuildmat.2018.04.171
  • Naaman, A. E. (2010). Textile reinforced cement composites : Competitive status and research directions. International RILEM Conference on Materials Science (MatSci), I, 3–22.
  • NF EN 12390-5. (n.d.). Afnor EDITIONS. Consulté 19 janvier 2023, à l’adresse. https://www.boutique.afnor.org/fr-fr/norme/nf-en-123905/essais-pour-beton-durci-partie-5-resistance-a-la-flexion-des-eprouvettes/fa190567/83459
  • Olivito, R. S., Cevallos, O. A., & Carrozzini, A. (2014). Development of durable cementitious composites using sisal and flax fabrics for reinforcement of masonry structures. Materials & Design, 57, 258–268. https://doi.org/10.1016/j.matdes.2013.11.023
  • Page, J., Khadraoui, F., Gomina, M., & Boutouil, M. (2019). Influence of different surface treatments on the water absorption capacity of flax fibres : Rheology of fresh reinforced-mortars and mechanical properties in the hardened state. Construction and Building Materials, 199, 424–434. https://doi.org/10.1016/j.conbuildmat.2018.12.042
  • Peled, A., & Bentur, A. (2003). Fabric structure and its reinforcing efficiency in textile reinforced cement composites. Composites Part A: Applied Science and Manufacturing, 34(2), 107–118. https://doi.org/10.1016/S1359-835X(03)00003-4
  • Peled, A., Cohen, Z., Pasder, Y., Roye, A., & Gries, T. (2008). Influences of textile characteristics on the tensile properties of warp knitted cement based composites. Cement and Concrete Composites, 30(3), 174–183. https://doi.org/10.1016/j.cemconcomp.2007.09.001
  • Rahman, M. M., Zhao, X., D’Antino, T., Focacci, F., & Carloni, C. (2022). Fracture behavior and digital image analysis of GFRP reinforced concrete notched beams. Materials, 15(17), 5981. https://doi.org/10.3390/ma15175981
  • Rempel, S., Kulas, C., Will, N., & Bielak, J. (2018). Extremely light and slender precast pedestrian-bridge made out of textile-reinforced concrete (TRC). In D. A. Hordijk & M. Luković (Éds.), High tech concrete: Where technology and engineering meet (pp. 2530–2537). Springer International Publishing. https://doi.org/10.1007/978-3-319-59471-2_288
  • Saidi, M., & Gabor, A. (2020). Iterative analytical modelling of the global behaviour of textile-reinforced cementitious matrix composites subjected to tensile loading. Construction and Building Materials, 263, 120130. https://doi.org/10.1016/j.conbuildmat.2020.120130
  • Saidi, M., Michel, M., & Gabor, A. (2022). Analysis of early-age behaviour of textile-reinforced cementitious matrix composites (TRC) using different measurements techniques. Measurement, 187, 110365. https://doi.org/10.1016/j.measurement.2021.110365
  • Service (ICC-ES), I. C. C. E. (2018). Masonry and concrete strengthening using fabric-reinforced cementitious matrix (FRCM) and steel reinforced grout (SRG) composite systems AC434. International Code Council Evaluation Service Whittier, CA, USA.
  • Sommain, D. (2007). Prompt natural cement the Roman cement of Grenoble. CTLV GROUPE VICAT Liants Speciaux.
  • Song, H., Liu, J., He, K., & Ahmad, W. (2021). A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 15, e00724. https://doi.org/10.1016/j.cscm.2021.e00724
  • Tolêdo Filho, R. D., Scrivener, K., England, G. L., & Ghavami, K. (2000). Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cement and Concrete Composites, 22(2), 127–143. https://doi.org/10.1016/S0958-9465(99)00039-6
  • Triantafillou, T. (2016). Textile fibre composites in civil engineering. Woodhead Publishing.
  • Trochoutsou, N., Di Benedetti, M., Pilakoutas, K., & Guadagnini, M. (2021). Mechanical characterisation of flax and jute textile-reinforced mortars. Construction and Building Materials, 271, 121564. https://doi.org/10.1016/j.conbuildmat.2020.121564
  • Yan, L., Kasal, B., & Huang, L. (2016). A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B: Engineering, 92, 94–132. https://doi.org/10.1016/j.compositesb.2016.02.002
  • Zukowski, B., de Andrade Silva, F., & Toledo Filho, R. D. (2018). Design of strain hardening cement-based composites with alkali treated natural curauá fiber. Cement and Concrete Composites, 89, 150–159. https://doi.org/10.1016/j.cemconcomp.2018.03.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.