145
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Energy equation and stress–dilatancy relationship for crushable granular materials incorporating particle breakage

, , &
Pages 4711-4728 | Received 22 Dec 2022, Accepted 20 Mar 2023, Published online: 31 Mar 2023

References

  • Arici, Y. (2011). Investigation of the cracking of cfrd face plates. Computers and Geotechnics, 38(7), 905–916. doi:10.1016/j.compgeo.2011.06.004
  • Dai, B. B., Yang, J., Zhang, W., Xu, K., & Li, A. G. (2018). Energy-based analysis of effect of inter-particle friction on the shear behavior of granular materials. GeoShanghai International Conference (pp. 628–636). Springer. doi:10.1007/978-981-13-0125-4_70
  • Fu, Z., Chen, S., & Wei, K. (2019). A generalized plasticity model for the stress-strain and creep behavior of rockfill materials. Science China Technological Sciences, 62(4), 649–664. doi:10.1007/s11431-018-9362-3
  • Guo, P., & Su, X. (2007). Shear strength, interparticle locking, and dilatancy of granular materials. Canadian Geotechnical Journal, 44(5), 579–591. doi:10.1139/T07-010
  • Guo, W. L., Cai, Z. Y., Wu, Y. L., Zhang, C., & Wang, J. J. (2022). Dilatancy behaviour of rockfill materials and its description. European Journal of Environmental and Civil Engineering, 26(5), 1883–1896. doi:10.1080/19648189.2020.1739562
  • Guo, W., & Chen, L. (2019). A stress-dilatancy relationship for rockfill incorporating particle breakage and intermediate principal-stress ratio. KSCE Journal of Civil Engineering, 23(7), 2847–2851. doi:10.1007/s12205-019-0279-8
  • Guo, W., Chen, G., Wang, J., & Jian, F (2022). Energy-based plastic potential and yield functions for rockfills. Bulletin of Engineering Geology and the Environment, 81(1), 1–9. doi:10.1007/s10064-021-02545-3
  • Hardin, B. O. (1985). Crushing of soil particles. Journal of Geotechnical Engineering, 111(10), 1177–1192. doi:10.1061/(ASCE)0733-9410(1985)111:10(1177)
  • He, J., Luo, F., Zhu, Z., Zhang, Y., Ling, C., & Zou, Z (2022). An elastoplastic constitutive model for frozen sandy soil considering particle breakage. European Journal of Environmental and Civil Engineering, 26(1), 320–344. doi:10.1080/19648189.2019.1657962
  • He, S. H., Shan, H. F., Xia, T. D., Liu, Z. J., Ding, Z., & Xia, F (2021). The effect of temperature on the drained shear behavior of calcareous sand. Acta Geotechnica, 16(2), 613–633. doi:10.1007/s11440-020-01030-7
  • Indraratna, B., & Salim, W. (2022). Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy. Geotechnical Engineering, 155(4), 243–252. doi:10.1680/geng.155.4.243.38691
  • Jia, Y. F., Chi, S. C., Yang, J., & Lin, G (2009). Measurement of breakage energy of coarse granular aggregates. Rock Soil Mechanics, 30(7), 1960–1966. doi:10.16285/j.rsm.2009.07.032
  • Jiang, M., Zhang, A., & Fu, C. (2018). 3-d dem simulations of drained triaxial tests on inherently anisotropic granulates. European Journal of Environmental and Civil Engineering, 22(1), s37–s56. doi:10.1080/19648189.2017.1385541
  • Lei, H., Chen, Z., & Kang, X. (2022). Examination of particle shape on the shear behaviours of granules using 3d printed soil. European Journal of Environmental and Civil Engineering, 26(9), 4200–4219. doi:10.1080/19648189.2020.1845983
  • Liu, M., Gao, Y., & Liu, H. (2014). An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage. International Journal for Numerical and Analytical Methods in Geomechanics, 38(9), 935–960. doi:10.1002/nag.2243
  • Ma, G., Zhou, W., Chang, X. L., & Chen, M. X (2016). A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granular Matter, 18(1), 1–17. doi:10.1007/s10035-016-0615-3
  • Marsal, R. J. (1967). Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundations Division, 93(2), 27–43. doi:10.1061/JSFEAQ.0000958
  • McDowell, G. (2002). A simple non-associated flow model for sand. Granular Matter, 4(2), 65–69. doi:10.1007/s10035-002-0106-6
  • McDowell, G., & Hau, K. (2004). A generalised modified cam clay model for clay and sand incorporating kinematic hardening and bounding surface plasticity. Granular Matter, 6(1), 11–16. doi:10.1007/s10035-003-0152-8
  • Mi, Z., Li, G., & Chen, S. (2012). Constitutive model for coarse granular materials based on breakage energy. Chinese Journal of Geotechnical Engineering, 34(10), 1801–1811. URL:cge.nhri.cn/cn/article/id/14871
  • Nguyen, D. H., Azéma, É., Sornay, P., & Radjai, F (2018). Rheology of granular materials composed of crushable particles. The European Physical Journal E, 41(4), 1–11. doi:10.1140/epje/i2018-11656-1
  • Nguyen, H., Rahman, M., & Fourie, A. (2018). Characteristic behavior of drained and undrained triaxial compression tests: Dem study. Journal of Geotechnical and Geoenvironmental Engineering, 144(9), 04018060. doi:10.1061/(asce)gt.1943-5606.0001940
  • Ning, F. W., Kong, X. J., Zou, D. G., Liu, J. M., Yu, X., & Zhou, C. G (2021). Scale effect of rockfill materials and its influences on deformation and stress analysis of aertashi cfrd. Chinese Journal of Geotechnical Engineering, 43, 263–270. doi: 10.11779/CJGE202102006
  • Roscoe, K., Schofield, A., & Thurairajah, A. (1963). Yielding of clays in states wetter than critical. Géotechnique, 13(3), 211–240. doi:10.1680/geot.1963.13.3.211
  • Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 269(1339), 500–527. doi:10.1098/rspa.1962.0193
  • Salim, W., & Indraratna, B. (2004). A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage. Canadian Geotechnical Journal, 41(4), 657–671. doi:10.1139/t04-025
  • Schanz, T., & Vermeer, P. (1996). Angles of friction and dilatancy of sand. Géotechnique, 46(1), 145–151. doi:10.1680/geot.1996.46.1.145
  • Shen, J. H., Wang, X., Cui, J., Wang, X. Z., & Zhu, C. Q (2022). Shear characteristics of calcareous gravelly sand considering particle breakage. Bulletin of Engineering Geology and the Environment, 81(3), 1–29. doi: 10.1007/s10064-022-02603-4
  • Sukkarak, R., Pramthawee, P., & Jongpradist, P. (2017). A modified elasto-plastic model with double yield surfaces and considering particle breakage for the settlement analysis of high rockfill dams. KSCE Journal of Civil Engineering, 21(3), 734–745. doi:10.1007/s12205-016-0867-9
  • Sun, Y., Xiao, Y., & Ji, H. (2016). Dilation and breakage dissipation of granular soils subjected to monotonic loading. Acta Mechanica Sinica, 32(6), 1065–1074. doi:10.1007/s10409-016-0569-z
  • Sun, Z., Chu, J., & Xiao, Y. (2021). Formulation and implementation of an elastoplastic constitutive model for sand-fines mixtures. International Journal for Numerical and Analytical Methods in Geomechanics, 45(18), 2682–2708. doi:10.1002/nag.3282
  • Sun, Z., Cui, H., Liu, H., Wang, C., Xiao, Y., & Wu, H (2021). Explicit integration and implementation of state-dependent constitutive model for rockfill materials. Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference (pp. 78–93). Springer. doi:10.1007/978-3-030-79650-1_7
  • Tian, S., Indraratna, B., Tang, L., Qi, Y., & Ling, X (2020). A semi-empirical elasto-plastic constitutive model for coarse-grained materials that incorporates the effects of freeze-thaw cycles. Transportation Geotechnics, 24, 100373. doi: 10.1016/j.trgeo.2020.100373
  • Ueng, T., & Chen, T. (2000). Energy aspects of particle breakage in drained shear of sands. Géotechnique, 50(1), 65–72. doi:10.1680/geot.2000.50.1.65
  • Wan, R., & Guo, P. (1998). A simple constitutive model for granular soils: modified stress-dilatancy approach. Computers and Geotechnics, 22(2), 109–133. doi:10.1016/s0266-352x(98)00004-4
  • Wang, J., & Yan, H. (2012). Dem analysis of energy dissipation in crushable soils. Soils and Foundations, 52(4), 644–657. doi:10.1016/j.sandf.2012.07.006
  • Wang, L., Yin, M., Kong, H., & Zhang, H (2022). Experimental study on breakage characteristics and energy dissipation of the crushed rock grains. KSCE Journal of Civil Engineering, 26(3), 1465–1478. doi:10.1007/s12205-022-1088-z
  • Wang, P., & Arson, C. (2018). Energy distribution during the quasi-static confined comminution of granular materials. Acta Geotechnica, 13(5), 1075–1083. doi:10.1007/s11440-017-0622-5
  • Wang, X., Wu, Y., Lu, Y., Cui, J., Wang, X., & Zhu, C (2021). Strength and dilatancy of coral sand in the south china sea. Bulletin of Engineering Geology and the Environment, 80(10), 8279–8299. doi:10.1007/s10064-021-02348-6
  • Wei, K., & Zhu, S. (2013). A generalized plasticity model to predict behaviors of the concrete-faced rock-fill dam under complex loading conditions. European Journal of Environmental and Civil Engineering, 17(7), 579–597. doi:10.1080/19648189.2013.805166
  • Wood, D. M., & Belkheir, K. (1994). Strain softening and state parameter for sand modelling. Géotechnique, 44(2), 335–339. doi:10.1680/geot.1994.44.2.335
  • Wu, E. L., Zhu, J. G., He, S. B., & Peng, W. M (2022). A stress dilatancy relationship for coarse-grained soils incorporating particle breakage. Granular Matter, 24(1), 1–9. doi: 10.1007/s10035-021-01147-w
  • Yang, W. U., Jie, C. U. I., Neng, L. I., Xing, W. A. N. G., Yi-hang, W. U., & Shu-yang, G. U. O (2020). Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the south china sea. Rock and Soil Mechanics, 41(10), 3181. doi: 10.16285/j.rsm.2020.0596
  • Xiao, Y., Liu, H., Chen, Y., Jiang, J., & Zhang, W (2015). State-dependent constitutive model for rockfill materials. International Journal of Geomechanics, 15(5), 04014075. doi:10.1061/(asce)gm.1943-5622.0000421
  • Xiao, Y., Sun, Y., & Hanif, K. F. (2015). A particle-breakage critical state model for rockfill material. Science China Technological Sciences, 58(7), 1125–1136. doi: 10.1007/s11431-015-5831-2
  • Xiao, Y., Sun, Y., Liu, H., Xiang, J., Ma, Q., & Long, L (2017). Model predictions for behaviors of sand-nonplastic-fines mixturesusing equivalent-skeleton void-ratio state index. Science China Technological Sciences, 60(6), 878–892. doi: 10.1007/s11431-016-9024-9
  • Xiao, Y., Sun, Y., Yin, F., Liu, H., & Xiang, J (2017). Constitutive modeling for transparent granular soils. International Journal of Geomechanics, 17(7), 04016150. doi:10.1061/(asce)gm.1943-5622.0000857
  • Xiao, Y., Sun, Z., Stuedlein, A. W., Wang, C., Wu, Z., & Zhang, Z (2020). Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials. Geoscience Frontiers, 11(2), 495–510. doi:10.1016/j.gsf.2019.06.010
  • Yang, G., Yan, X., Nimbalkar, S., & Xu, J (2019). Effect of particle shape and confining pressure on breakage and deformation of artificial rockfill. International Journal of Geosynthetics and Ground Engineering, 5(2), 1–10. doi:10.1007/s40891-019-0164-z
  • Yu, F. (2017). Stress-dilatancy behavior of sand incorporating particle breakage. Acta Geotechnica Slovenica, 14(1), 55–61.
  • Zhang, J., & Luo, M. (2020). Dilatancy and critical state of calcareous sand incorporating particle breakage. International Journal of Geomechanics, 20(4), 04020030. doi:10.1061/(asce)gm.1943-5622.0001637

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.