187
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Surface application of multifunctional compound to prevent and control combined chloride and carbonation corrosion in concrete

, , &
Pages 4729-4755 | Received 27 Sep 2022, Accepted 27 Mar 2023, Published online: 12 Apr 2023

References

  • Aguirre-Guerrero, A. M., Mejía-De-Gutiérrez, R., & Montês-Correia, M. J. R. (2016). Corrosion performance of blended concretes exposed to different aggressive environments. Construction and Building Materials, 121, 704–716. https://doi.org/10.1016/j.conbuildmat.2016.06.038
  • Al-Otaibi, M. S., Al-Mayouf, A. M., Khan, M., Mousa, A. A., Al-Mazroa, S. A., & Alkhathlan, H. Z. (2014). Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arabian Journal of Chemistry, 7(3), 340–346. https://doi.org/10.1016/j.arabjc.2012.01.015
  • Alonso, C., Andrade, C., Argiz, C., & Malric, B. (1996). Na2PO3F as inhibitor of corroding reinforcement in carbonated concrete. Cement and Concrete Research, 26(3), 405–415. https://doi.org/10.1016/S0008-8846(96)85028-9
  • American Society for Testing and Materials. (2009). ASTM C 876/09 - Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. Annual Book for ASTM Standards, American Society for Testing and Materials, 91(Reapproved 1999), 1–6.
  • Andrade, C., & Buják, R. (2013). Effects of some mineral additions to Portland cement on reinforcement corrosion. Cement and Concrete Research, 53, 59–67. https://doi.org/10.1016/j.cemconres.2013.06.004
  • Angst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51(1), 1–20. https://doi.org/10.1617/s11527-017-1131-6
  • Ann, K. Y., Jung, H. S., Kim, H. S., Kim, S. S., & Moon, H. Y. (2006). Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete. Cement and Concrete Research, 36(3), 530–535. https://doi.org/10.1016/j.cemconres.2005.09.003
  • ASTM. (n.d.). Standard practice for conventions applicable to electrochemical measurements in corrosion testing. https://doi.org/10.1520/G0003-89R10
  • ASTM. (2022). Standard test methods for determining effects of chemical admixtures on corrosion of embedded steel reinforcement in concrete exposed to chloride environments. https://doi.org/10.1520/G0109-21
  • ASTM C1218/C1218M-20. (2020). Standard test method for water-soluble chloride in mortar and concrete. American Society for Testing and Materials, 3pp. https://doi.org/10.1520/C1218_C1218M-20
  • ASTM International. (2012). Standard practice for preparing, cleaning, and evaluating corrosion test specimens. Astm G1-03, 9pp. https://doi.org/10.1520/G0001-03R11
  • Berke, N. S., & Hicks, M. C. (2004). Predicting long-term durability of steel reinforced concrete with calcium nitrite corrosion inhibitor. Cement and Concrete Composites, 26(3), 191–198. https://doi.org/10.1016/S0958-9465(03)00038-6
  • BIS:10262. (2009). Indian Standard Guidelines for concrete mix design proportioning. Bureau of Indian Standards.
  • BIS:1489 (Part 1). (1991). Portland-pozzolana cement-specification. Bureau of Indian Standard (BIS).
  • Bureau of Indian Standard (BIS). (2013). IS: 8112 – 1989, Specification for 43 grade Ordinary Portland Cement (Vol. 17). Bureau of Indian Standards.
  • Chaussadent, T., Nobel-Pujol, V., Farcas, F., Mabille, I., & Fiaud, C. (2006). Effectiveness conditions of sodium monofluorophosphate as a corrosion inhibitor for concrete reinforcements. Cement and Concrete Research, 36(3), 556–561. https://doi.org/10.1016/j.cemconres.2005.09.006
  • Dariva, C. G., & Galio, A. F. (2014). Corrosion inhibitors - Principles mechanisms and applications. Developments in Corrosion Protection, 16, 365–379. https://doi.org/10.5772/57255
  • Dharmaraj, R., & Malathy, R. (2015). Performance evaluation of sodium nitrite corrosion inhibitor in self compacting concrete. Indian Journal of Science and Technology, 8(36), 1–6. https://doi.org/10.17485/ijst/2015/v8i36/87647
  • Dong, B. Q., Qiu, Q. W., Xiang, J. Q., Huang, C. J., Xing, F., Han, N. X., & Lu, Y. Y. (2014). Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials. Construction and Building Materials, 54, 558–565. https://doi.org/10.1016/j.conbuildmat.2013.12.100
  • Ehtesham Hussain, S., Rasheeduzzafar, & Al-Gahtani, A. S. (1994). Influence of sulfates on chloride binding in cements. Cement and Concrete Research, 24(1), 8–24. https://doi.org/10.1016/0008-8846(94)90078-7
  • Florea, M. V. A., & Brouwers, H. J. H. (2014). Modelling of chloride binding related to hydration products in slag-blended cements. Construction and Building Materials, 64, 421–430. https://doi.org/10.1016/j.conbuildmat.2014.04.038
  • Ford, S. J., Shane, J. D., & Mason, T. O. (1998). Assignment of features in impedance spectra of the cement-paste/steel system. Cement and Concrete Research, 28(12), 1737–1751. https://doi.org/10.1016/S0008-8846(98)00156-2
  • Franco-Luján, V. A., Mendoza-Rangel, J. M., Jiménez-Quero, V. G., & Montes-García, P. (2021). Chloride-binding capacity of ternary concretes containing fly ash and untreated sugarcane bagasse ash. Cement and Concrete Composites, 120(April), 104040. https://doi.org/10.1016/j.cemconcomp.2021.104040
  • Fuhaid, A. F. A., & Niaz, A. (2022). Carbonation and corrosion problems in reinforced concrete structures. Buildings, 12(5), 586. https://doi.org/10.3390/buildings12050586
  • Geng, J., Easterbrook, D., Liu, Q. F., & Li, L. Y. (2016). Effect of carbonation on release of bound chlorides in chloride-contaminated concrete. Magazine of Concrete Research, 68(7), 353–363. https://doi.org/10.1680/jmacr.15.00234
  • Goyal, A., Ganjian, E., Pouya, H. S., & Tyrer, M. (2021). Inhibitor efficiency of migratory corrosion inhibitors to reduce corrosion in reinforced concrete exposed to high chloride environment. Construction and Building Materials, 303(May), 124461. https://doi.org/10.1016/j.conbuildmat.2021.124461
  • Gu, P., Elliott, S., Hristova, R., Beaudoin, J. J., Brousseau, R., & Baldock, B. (1997). A Study of corrosion inhibitor performance in chloride contaminated concrete by electrochemical impedance spectroscopy. ACI Materials Journal, 94(5), 385–395. https://doi.org/10.14359/323
  • Hang, M., Jiang, M., Xu, J., Cheng, T., Wang, H., & Zhou, G. (2021). The electrochemical performance and modi fi cation mechanism of the corrosion inhibitor on concrete. Science and Engineering of Composite Materials, 28(1), 352–562. https://doi.org/10.1515/secm-2021-0037
  • Heiyantuduwa, R., Alexander, M. G., & Mackechnie, J. R. (2006). Performance of a penetrating corrosion inhibitor in concrete affected by carbonation-induced corrosion. Journal of Materials in Civil Engineering, 18(6), 842–850. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(842)
  • Hren, M., Bokan Bosiljkov, V., & Legat, A. (2021). Effects of blended cements and carbonation on chloride-induced corrosion propagation. Cement and Concrete Research, 145(August 2020), 106458. https://doi.org/10.1016/j.cemconres.2021.106458
  • Hu, X., & Poon, C. S. (2022). Chloride-related steel corrosion initiation in cement paste prepared with the incorporation of blast-furnace slag. Cement and Concrete Composites, 126(April 2019), 104349. https://doi.org/10.1016/j.cemconcomp.2021.104349
  • Huang, Q., Jiang, Z., Zhang, W., Gu, X., & Dou, X. (2012). Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation. Construction and Building Materials, 37, 27–35. https://doi.org/10.1016/j.conbuildmat.2012.06.074
  • IS:1786-2008. (2008). High strength deformed steel bars and wires for concrete reinforcement—Specification (pp. 1–12). Bureau of Indian Standards.
  • IS 456. (2000). Plain concrete and reinforced (pp. 1–114). Bureau of Indian Standards.
  • IS 383. (2016). Coarse and fine aggregate for concrete. Indian Standard Code, 3rd ed. (January), pp. 1–17.
  • Jamil, H. E., Shriri, A., Boulif, R., Bastos, C., Montemor, M. F., & Ferreira, M. G. S. (2004). Electrochemical behaviour of amino alcohol-based inhibitors used to control corrosion of reinforcing steel. Electrochimica Acta, 49(17–18), 2753–2760. https://doi.org/10.1016/j.electacta.2004.01.041
  • Jiang, S. B., Jiang, L. H., Wang, Z. Y., Jin, M., Bai, S., Song, S., & Yan, X. (2017). Deoxyribonucleic acid as an inhibitor for chloride-induced corrosion of reinforcing steel in simulated concrete pore solutions. Construction and Building Materials, 150, 238–247. https://doi.org/10.1016/j.conbuildmat.2017.05.157
  • Jung, M. S., Kim, K. B., Lee, S. A., & Ann, K. Y. (2018). Risk of chloride-induced corrosion of steel in SF concrete exposed to a chloride-bearing environment. Construction and Building Materials, 166, 413–422. https://doi.org/10.1016/j.conbuildmat.2018.01.168
  • Justnes, H., Skocek, J., Østnor, T. A., Engelsen, C. J., & Skjølsvold, O. (2020). Microstructural changes of hydrated cement blended with fly ash upon carbonation. Cement and Concrete Research, 137(August), 106192. https://doi.org/10.1016/j.cemconres.2020.106192
  • Karthick, S. P., Madhavamayandi, A., Muralidharan, S., & Saraswathy, V. (2016). Electrochemical process to improve the durability of concrete structures. Journal of Building Engineering, 7, 273–280. https://doi.org/10.1016/j.jobe.2016.07.005
  • Kaur, K., Goyal, S., Bhattacharje, B., Oh, T., Kim, J., Lee, C., & Park, S. (2017). Electrochemical Impedance Spectroscopy to study the carbonation behavior of concrete treated with corrosion inhibitors. Journal of Advanced Concrete Technology, 15(12), 738–748. https://doi.org/10.3151/jact.15.738
  • Kaur, K., Goyal, S., Bhattacharjee, B., & Kumar, M. (2016). Efficiency of migratory-type organic corrosion inhibitors in carbonated environment. Journal of Advanced Concrete Technology, 14(9), 548–558. https://doi.org/10.3151/jact.14.548
  • Kondratova, I. L., Montes, P., & Bremner, T. W. (2003). Natural marine exposure results for reinforced concrete slabs with corrosion inhibitors. Cement and Concrete Composites, 25(4–5), 483–490. https://doi.org/10.1016/S0958-9465(02)00088-4
  • Królikowski, A., & Kuziak, J. (2011). Impedance study on calcium nitrite as a penetrating corrosion inhibitor for steel in concrete. Electrochimica Acta, 56(23), 7845–7853. https://doi.org/10.1016/j.electacta.2011.01.069
  • Kuosa, H., Ferreira, R. M., Holt, E., Leivo, M., & Vesikari, E. (2014). Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life. Cement and Concrete Composites, 47, 32–40. https://doi.org/10.1016/j.cemconcomp.2013.10.008
  • Kwon, S. J., Lee, H. S., Karthick, S., Saraswathy, V., & Yang, H. M. (2017). Long-term corrosion performance of blended cement concrete in the marine environment – A real-time study. Construction and Building Materials, 154, 349–360. https://doi.org/10.1016/j.conbuildmat.2017.07.237
  • Lee, H. S., Yang, H. M., Singh, J. K., Prasad, S. K., & Yoo, B. (2018). Corrosion mitigation of steel rebars in chloride contaminated concrete pore solution using inhibitor: An electrochemical investigation. Construction and Building Materials, 173, 443–451. https://doi.org/10.1016/j.conbuildmat.2018.04.069
  • Liu, J. Z., Zhao, D., Cai, J. S., Shi, L., & Liu, J. P. (2016). Aryl aminoalcohols as corrosion inhibitors for carbon steel in chloride-contaminated simulated concrete pore solution. International Journal of Electrochemical Science, 11(2), 1135–1151.
  • Lye, C. Q., Dhir, R. K., & Ghataora, G. S. (2015). Carbonation resistance of fly ash concrete. Magazine of Concrete Research, 67(21), 1150–1178. https://doi.org/10.1680/macr.15.00204
  • Lye, C. Q., Dhir, R. K., & Ghataora, G. S. (2016). Carbonation resistance of GGBS concrete. Magazine of Concrete Research, 68(18), 936–969. https://doi.org/10.1680/jmacr.15.00449
  • Magdalena Osial, D. W. (2016). Organic substances as corrosion inhibitors for steel in concrete – An overview. Journal of Building Chemistry, 1, 42–53. https://doi.org/10.17461/j.buildchem.2016.107
  • Montemor, M. F., Cunha, M. P., Ferreira, M. G., & Simões, A. M. (2002). Corrosion behaviour of rebars in fly ash mortar exposed to carbon dioxide and chlorides. Cement and Concrete Composites, 24(1), 45–53. https://doi.org/10.1016/S0958-9465(01)00025-7
  • Montemor, M. F., Simões, A. M. P., & Ferreira, M. G. S. (2003). Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques. Cement and Concrete Composites, 25(4–5), 491–502. https://doi.org/10.1016/S0958-9465(02)00089-6
  • Monticelli, C., Frignani, A., Balbo, A., & Zucchi, F. (2011). Influence of two specific inhibitors on steel corrosion in a synthetic solution simulating a carbonated concrete with chlorides. Materials and Corrosion, 62(2), 178–186. https://doi.org/10.1002/maco.201005764
  • Monticelli, C., Frignani, A., & Trabanelli, G. (2000). A study on corrosion inhibitors for concrete application. Science Direct, 30(January), 635–642.
  • Morandeau, A., Thiéry, M., & Dangla, P. (2014). Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cement and Concrete Research, 56, 153–170. https://doi.org/10.1016/j.cemconres.2013.11.015
  • Morandeau, A., Thiéry, M., & Dangla, P. (2015). Impact of accelerated carbonation on OPC cement paste blended with fly ash. Cement and Concrete Research, 67, 226–236. https://doi.org/10.1016/j.cemconres.2014.10.003
  • Nmai, C. K. (2004). Multi-functional organic corrosion inhibitor. Cement and Concrete Composites, 26(3), 199–207. https://doi.org/10.1016/S0958-9465(03)00039-8
  • Ormellese, M., Lazzari, L., Goidanich, S., Fumagalli, G., & Brenna, A. (2009). A study of organic substances as inhibitors for chloride-induced corrosion in concrete. Corrosion Science, 51(12), 2959–2968. https://doi.org/10.1016/j.corsci.2009.08.018
  • Priya, P. V., & Rao, N. S. P. (2017). Comparative study on various methods used for corrosion protection of rebar in concrete. International Journal of Applied Research, 3(1), 426–431.
  • Ramezanianpour, A. A., Ghahari, S. A., & Esmaeili, M. (2014). Effect of combined carbonation and chloride ion ingress by an accelerated test method on microscopic and mechanical properties of concrete. Construction and Building Materials, 58, 138–146. https://doi.org/10.1016/j.conbuildmat.2014.01.102
  • Ribeiro, D. V., & Abrantes, J. C. C. (2016). Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials, 111, 98–104. https://doi.org/10.1016/j.conbuildmat.2016.02.047
  • Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. https://doi.org/10.1016/j.conbuildmat.2020.121240
  • Rumman, R., Kamal, M. R., Manzur, T., & Noor, M. A. (2022). Optimum proportion of fly ash or slag for resisting concrete deterioration due to carbonation and chloride ingress. Structures, 41, 287–305. https://doi.org/10.1016/j.istruc.2022.04.087
  • San Nicolas, R., Cyr, M., & Escadeillas, G. (2014). Performance-based approach to durability of concrete containing flash-calcined metakaolin as cement replacement. Construction and Building Materials, 55, 313–322. https://doi.org/10.1016/j.conbuildmat.2014.01.063
  • Saricimen, H., Mohammad, M., Quddus, A., Shameem, M., & Barry, M. S. (2002). Effectiveness of concrete inhibitors in retarding rebar corrosion. Cement and Concrete Composites, 24(1), 89–100. https://doi.org/10.1016/S0958-9465(01)00030-0
  • Shi, J., Wu, M., & Ming, J. (2022). In-depth insight into the role of molybdate in corrosion resistance of reinforcing steel in chloride-contaminated mortars. Cement and Concrete Composites, 132(June), 104628. https://doi.org/10.1016/j.cemconcomp.2022.104628
  • Sideris, K. K., & Savva, A. E. (2005). Durability of mixtures containing calcium nitrite based corrosion inhibitor. Cement and Concrete Composites, 27(2), 277–287. https://doi.org/10.1016/j.cemconcomp.2004.02.016
  • Sohail, M. G., Kahraman, R., Alnuaimi, N. A., Gencturk, B., Alnahhal, W., Dawood, M., & Belarbi, A. (2020). Electrochemical behavior of mild and corrosion resistant concrete reinforcing steels. Construction and Building Materials, 232, 117205. https://doi.org/10.1016/j.conbuildmat.2019.117205
  • Song, H. W., & Saraswathy, V. (2007). Corrosion monitoring of reinforced concrete structures - A review. International Journal of Electrochemical Science, 2(1), 1–28.
  • Söylev, T. A., McNally, C., & Richardson, M. G. (2007). The effect of a new generation surface-applied organic inhibitor on concrete properties. Cement and Concrete Composites, 29(5), 357–364. https://doi.org/10.1016/j.cemconcomp.2006.12.013
  • Söylev, T. A., & Richardson, M. G. (2008). Corrosion inhibitors for steel in concrete: State-of-the-art report. Construction and Building Materials, 22(4), 609–622. https://doi.org/10.1016/j.conbuildmat.2006.10.013
  • Stefanoni, M., Angst, U., & Elsener, B. (2018). Corrosion rate of carbon steel in carbonated concrete – A critical review. Cement and Concrete Research, 103(October 2017), 35–48. https://doi.org/10.1016/j.cemconres.2017.10.007
  • Talati, J. D., & Joshi, N. H. (1978). Aldehydes as corrosion inhibitors for aluminium‐manganese alloys in potassium hydroxide. Materials and Corrosion/Werkstoffe Und Korrosion, 29(7), 461–468. https://doi.org/10.1002/maco.19780290706
  • Tang, Y., Zhang, G., & Zuo, Y. (2012). The inhibition effects of several inhibitors on rebar in acidified concrete pore solution. Construction and Building Materials, 28(1), 327–332. https://doi.org/10.1016/j.conbuildmat.2011.08.048
  • Thomas, M. D. A., Hooton, R. D., Scott, A., & Zibara, H. (2012). The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement and Concrete Research, 42(1), 1–7. https://doi.org/10.1016/j.cemconres.2011.01.001
  • Tiwari, A., Goyal, S., Luxami, V., Chakraborty, M. K., & Gundlapalli, P. (2021a). Evaluation of inhibition efficiency of generic compounds with additional heteroatom in simulated concrete pore solution and migration potential in concrete. Journal of Building Engineering, 43(November 2020), 102490. https://doi.org/10.1016/j.jobe.2021.102490
  • Tiwari, A., Goyal, S., Luxami, V., Chakraborty, M. K., & Prabhakar, G. (2021b). Assessment of corrosion inhibition efficiency of generic compounds having different functional groups in carbonated pore solution with chlorides and migration ability in concrete. Construction and Building Materials, 290, 123275. https://doi.org/10.1016/j.conbuildmat.2021.123275
  • Trabanelli, G., Monticelli, C., Grassi, V., & Frignani, A. (2005). Electrochemical study on inhibitors of rebar corrosion in carbonated concrete. Cement and Concrete Research, 35(9), 1804–1813. https://doi.org/10.1016/j.cemconres.2004.12.010
  • Vedalakshmi, R., & Palaniswamy, N. (2010). Analysis of the electrochemical phenomenon at the rebar-concrete interface using the electrochemical impedance spectroscopic technique. Magazine of Concrete Research, 62(3), 177–189. https://doi.org/10.1680/macr.2010.62.3.177
  • Vedalakshmi, R., & Thangavel, K. (2011). Reliability of electrochemical techniques to predict the corrosion rate of steel in concrete structures. Arabian Journal for Science and Engineering, 36(5), 769–783. https://doi.org/10.1007/s13369-011-0082-4
  • Vyrides, I., Rakanta, E., Zafeiropoulou, T., & Batis, G. (2013). Efficiency of amino alcohols as corrosion inhibitors in reinforced concrete. Open Journal of Civil Engineering, 03(02), 1–8. https://doi.org/10.4236/ojce.2013.32A001
  • Wan, X., Wittmann, F. H., Zhao, T., & Fan, H. (2013). Chloride content and pH value in the pore solution of concrete under carbonation. Journal of Zhejiang University Science A, 14(1), 71–78. https://doi.org/10.1631/jzus.A1200187
  • Wang, Y., Nanukuttan, S., Bai, Y., & Basheer, P. A. M. (2017). Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes. Construction and Building Materials, 140, 173–183. https://doi.org/10.1016/j.conbuildmat.2017.02.121
  • Wu, B., & Ye, G. (2017). Development of porosity of cement paste blended with supplementary cementitious materials after carbonation. Construction and Building Materials, 145, 52–61. https://doi.org/10.1016/j.conbuildmat.2017.03.176
  • Xu, Q., Hou, D., Zhang, H., Wang, P., Wang, M., Wu, D., Liu, C., Ding, Z., Zhang, M., Xin, Z., Fu, B., Guan, J., & Zhang, Y. (2022). Understanding the effect of vitamin B3, B6 and C as a corrosion inhibitor on the ordinary Portland cement hydration: Experiments and DFT study. Construction and Building Materials, 331(March), 127294. https://doi.org/10.1016/j.conbuildmat.2022.127294
  • Ye, H., Jin, X., Fu, C., Jin, N., Xu, Y., & Huang, T. (2016). Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation. Construction and Building Materials, 112, 457–463. https://doi.org/10.1016/j.conbuildmat.2016.02.194
  • Younsi, A., Turcry, P., Aït-Mokhtar, A., & Staquet, S. (2013). Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying. Cement and Concrete Research, 43(1), 25–33. https://doi.org/10.1016/j.cemconres.2012.10.008
  • Zaki, A., Chai, H. K., Aggelis, D. G., & Alver, N. (2015). Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique. Sensors (Basel, Switzerland), 15(8), 19069–19101. https://doi.org/10.3390/s150819069
  • Zhang, D., & Shao, Y. (2016). Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete. Construction and Building Materials, 123, 516–526. https://doi.org/10.1016/j.conbuildmat.2016.07.041
  • Zhang, G., Yang, Q., Hou, D., Zhou, P., & Ding, Q. (2022). Unraveling the microstructural properties of cement-slag composite pastes incorporated with smart polymer-based corrosion inhibitors: From experiment to molecular dynamics. Cement and Concrete Composites, 125(September 2021), 104298. https://doi.org/10.1016/j.cemconcomp.2021.104298
  • Zheng, H., Li, W., Ma, F., & Kong, Q. (2012). The effect of a surface-applied corrosion inhibitor on the durability of concrete. Construction and Building Materials, 37, 36–40. https://doi.org/10.1016/j.conbuildmat.2012.07.007
  • Zomorodian, A., Bagonyi, R., & Al-Tabbaa, A. (2021). The efficiency of eco-friendly corrosion inhibitors in protecting steel reinforcement. Journal of Building Engineering, 38(December 2020), 102171. https://doi.org/10.1016/j.jobe.2021.102171

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.