247
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Waste coal cement concrete for sustainable production

ORCID Icon, ORCID Icon & ORCID Icon
Pages 197-221 | Received 23 Sep 2022, Accepted 19 Apr 2023, Published online: 08 May 2023

References

  • Abbasi, M., & Nilsson, F. (2016). Developing environmentally sustainable logistics: Exploring themes and challenges from a logistics service providers’ perspective. Transportation Research Part D: Transport and Environment, 46, 273–283. https://doi.org/10.1016/j.trd.2016.04.004
  • Alderete, N. M., Joseph, A. M., Van den Heede, P., Matthys, S., & De Belie, N. (2021). Effective and sustainable use of municipal solid waste incineration bottom ash in concrete regarding strength and durability. Resources, Conservation & Recycling, 105356. 167. https://doi.org/10.1016/j.resconrec.2020.105356
  • American Society for Testing and Materials. (2019). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International.
  • Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217. https://doi.org/10.5194/essd-10-195-2018
  • Arun, N., Singh, P., & Gupta, S. (2020). Utilisation of ground bottom ash in concrete. Materials Today: Proceedings, 32, 663–669. https://doi.org/10.1016/j.matpr.2020.03.155
  • Aydin, E. (2016). Novel coal bottom ash waste composites for sustainable construction. Construction and Building Materials, 124, 582–588. https://doi.org/10.1016/j.conbuildmat.2016.07.142
  • Bajare, D., Bumanis, G., & Upeniece, L. (2013). Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete. Procedia Engineering, 57, 149–158. https://doi.org/10.1016/j.proeng.2013.04.022
  • Barbulescu, G., & Lafargue, R. (2016). Improving social sustainability through comfortable outdoor spaces. Transsolar Academy.
  • Bhat, J. A. (2021). Mechanical behaviour of self compacting concrete: Effect of wood ash and coal ash as partial cement replacement. Materials Today: Proceedings, 42, 1470–1476.
  • Ban, C.B.,Jia, L.J., Ping, K.K.L. & Siddique, R. ( 2022). ,315, 125249. 10.1016/j.conbuildmat.2021.125249
  • Bostanci, S. C. (2020). Use of waste marble dust and recycled glass sand for sustainable concrete production. Journal of Cleaner Production, 251, 119785. https://doi.org/10.1016/j.jclepro.2019.119785
  • Bostanci, S. C., Limbachiya, M., & Kew, H. (2016a). Portland composite and composite cement concretes made with coarse recycled and recycled glass sand aggregates: Engineering and durability properties. Construction and Building Materials, 128, 324–340. https://doi.org/10.1016/j.conbuildmat.2016.10.095
  • Bostanci, S. C., Limbachiya, M., & Kew, H. (2016b). Portland slag and composites cement concretes: Engineering and durability properties. Journal of Cleaner Production, 112, 542–552. https://doi.org/10.1016/j.jclepro.2015.08.070
  • Canpolat, F., Yilmaz, K., Köse, M. M., Sümer, M., & Yurdusev, M. (2004). Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cement and Concrete Research, 34(5), 731–735. https://doi.org/10.1016/S0008-8846(03)00063-2
  • Cheng, B., Liu, R., Li, X., Castillo, E. D. R., Chen, M., & Li, S. (2022). Effects of fly and coal bottom ash ratio on backfill material performance. Construction and Building Materials, 319, 125831. https://doi.org/10.1016/j.conbuildmat.2021.125831
  • Cheriaf, M., Cavalcante Rocha, J., & Pera, J. (1999). Pozzolanic properties of pulverized coal combustion bottom ash. Cement and Concrete Research, 29(9), 1387–1391. https://doi.org/10.1016/S0008-8846(99)00098-8
  • Climate Change Secretariat. (2008). Kyoto Protocol Reference Manual on Accounting of Emissions and Assigned Amount. United Nations Framework Convention on Climate Change. https://unfccc.int/sites/default/files/08_unfccc_kp_ref_manual.pdf.
  • de Brito, J., & Kurda, R. (2021). The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 281, 123558. https://doi.org/10.1016/j.jclepro.2020.123558
  • Demirboga, R. (2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 2467–2471. https://doi.org/10.1016/j.buildenv.2006.06.010
  • Desarnaulds, V., Costanzo, E., Carvalho, A., & Arlaud, B. (2005). Sustainability of acoustic materials and acoustic characterization of sustainable materials. In Proceedings of the 12th International Congress on Sound and Vibration (pp. 1–8). Lisbon.
  • Ding, T., Xiao, J., & Tam, V. W. (2016). A closed-loop life cycle assessment of recycled aggregate concrete utilization in China. Waste Management (New York, N.Y.), 56, 367–375. https://doi.org/10.1016/j.wasman.2016.05.031
  • European Parliament Research Service (2018). European Parliament. Retrieved from CO2 standards for new cars and vans: https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/614689/EPRS_BRI%282018%29614689_EN.pdf
  • Erdem, T. K., & Kırca, Ö. (2008). Use of binary and ternary blends in high strength concrete. Construction and Building Materials, (7)22, 1477–1483. https://doi.org/10.1016/j.conbuildmat.2007.03.026
  • Federal Highway Administration. (2016). Strategies for improving sustainability of concrete pavements. US Department of Transportation.
  • Flegar, M., Serdar, M., Londono-Zuluag, D., & Scrivener, K. (2020). Regional waste streams as potential raw materials for immediate implementation in cement production. Materials, (23), 5456. 13. https://doi.org/10.3390/ma13235456
  • Gonzalez, M., Navarrete, I., Arroyo, P., Azua, G., Mena, J., & Contreras, M. (2017). Sustainable decision-making through stochastic simulation: Transporting vs. recycling aggregates for Portland cement concrete in underground mining projects. Journal of Cleaner Production, 159, 1–10. https://doi.org/10.1016/j.jclepro.2017.05.012
  • Gooi, S., Mousa, A. A., & Kong, D. (2020). A critical review and gap analysis on the use of coal bottom ash as a substitute in concrete. Journal of Cleaner Production, 121752. 268. https://doi.org/10.1016/j.jclepro.2020.121752
  • Hafez, H., Kassim, D., Kurda, R., Silva, R., & de Brito, J. (2021). Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework. Construction and Building Materials, 122559. https://doi.org/10.1016/j.conbuildmat.2021.122559
  • Haibin, L., & Zhenling, L. (2010). Recycling utilization patterns of coal mining waste in China. Resources, Conservation and Recycling, 54(12), 1331–1340. https://doi.org/10.1016/j.resconrec.2010.05.005
  • Hajek, P. (2017). Concrete structures for sustainability in a changing world. Procedia Engineering, 171, 207–214. https://doi.org/10.1016/j.proeng.2017.01.328
  • Hammond, G., & Jones, C. (2011). Embodied Carbon - The Inventory of Carbon and Energy (ICE). Building Services Research and Information Association.
  • Hanafi, M., Aydin, E., & Ekinci, A. (2020). Engineering properties of basalt fibre-reinforced bottom ash cement paste composites. Materials, 13 (8), 1952. https://doi.org/10.3390/ma13081952
  • Hannan, N., Shahidan, S., Ali, N., Bunnori, N. M., Zuki, S., & Ibrahim, M. (2020). Acoustic and non-acoustic performance of coal bottom ash concrete as sound absorber for wall concrete. Case Studies in Construction Materials, 13, e00399. https://doi.org/10.1016/j.cscm.2020.e00399
  • Hasim, A. M., Shahid, K. A., Ariffin, N. F., Nasrudin, N. N., & Zaimi, M. N. S. (2022). Properties of high volume coal bottom ash in concrete production. Materials Today: Proceedings, 48, 1861–1867.
  • Hossain, M., Cai, R., Ng, T., Xuan, D., & Ye, H. (2021). Sustainable natural pozzolana concrete - A comparative study on its environmental performance against concrete with other industrial by-products. Construction and Building Materials, 270, 121429. https://doi.org/10.1016/j.conbuildmat.2020.121429
  • Huising, D., Zhang, Z., Moore, J. C., Qiao, Q., & Li, Q. (2015). Recent advances in carbon emissions reduction: Policies, technologies, monitoring, assessment and modeling. Journal of Cleaner Production, 103, 1–12. https://doi.org/10.1016/j.jclepro.2015.04.098
  • Hwang, S. S., & Cortes, C. M. (2021). Properties of mortar and pervious concrete with co-utilization of coal fly ash and waste glass powder as partial cement replacements. Construction and Building Materials, 270, 121415. https://doi.org/10.1016/j.conbuildmat.2020.121415
  • International Maritime Organization. (2014). Third IMO Greenhouse Gas Study 2014. International Maritime Organization.
  • Jang, J., Kim, H., Kim, H., & Lee, H. (2016). Resistance of coal bottom ash mortar against the coupled deterioration of carbonation and chloride penetration. Materials & Design, 93, 160–167. https://doi.org/10.1016/j.matdes.2015.12.074
  • Jimenez, C., Barra, M., Josa, A., & Valls, S. (2015). LCA of recycled and conventional concretes designed using the Equivalent Mortar Volume and classic methods. Construction and Building Materials, 84, 245–252. https://doi.org/10.1016/j.conbuildmat.2015.03.051
  • Jindal, B., Jangra, P., & Garg, A. (2020). Effects of ultra fine slag as mineral admixture on the compressive strength, water absorption and permeability of rice husk ash based geopolymer concrete. Materials Today: Proceedings, 32, 871–877. https://doi.org/10.1016/j.matpr.2020.04.219
  • Kaplan, R. S., & Norton, D. P. (1991). The Balanced Scorecard - Measures that Drive Performance. Hardvard Business Review, 70–80.
  • Kaur, H., Siddique, R., & Rajor, A. (2019). Influence of incinerated biomedical waste ash on the properties of concrete. Construction and Building Materials, 226, 428–441. https://doi.org/10.1016/j.conbuildmat.2019.07.239
  • Kaza, S., Yao, L., Bhada-Tata, P., & Woerden, F. V. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. International Bank for Reconstruction and Development.
  • Khaliq, W., & Kodur, V. (2011). Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cement and Concrete Research, 41(11), 1112–1122. https://doi.org/10.1016/j.cemconres.2011.06.012
  • Khan, S. U., Nuruddin, M. F., Ayub, T., & Shafiq, N. (2014). Effects of different mineral admixtures on the properties of fresh concrete. TheScientificWorldJournal, 2014, 986567. https://doi.org/10.1155/2014/986567
  • Khongpermgoson, P., Boonlao, K., Ananthanet, N., Thitithananon, T., Jaturapitakkul, C., Tangchirapat, W., & Ban, C. (2020). The mechanical properties and heat development behaviour of high strength concrete containing high fineness coal bottom ash as a pozzolanic binder. Construction and Building Materials, 253, 119239. https://doi.org/10.1016/j.conbuildmat.2020.119239
  • Kim, H. K., Jeon, J. H., & Lee, H. K. (2012). Flow, water absorption, and mechanical characteristics of normal and high-strength mortar incorporating fine bottom ash aggregates. Construction and Building Materials, 26(1), 249–256. https://doi.org/10.1016/j.conbuildmat.2011.06.019
  • Koshy, N., Dondrob, K., Hu, L., Wen, Q., & Meegoda, J. (2019). Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Construction and Building Materials, 206, 287–296. https://doi.org/10.1016/j.conbuildmat.2019.02.076
  • Kumar, P., & Singh, N. (2020). Influence of recycled concrete aggregates and Coal Bottom Ash on various properties of high volume of fly ash-self compacting concrete. Journal of Building Engineering, 32, 101491 https://doi.org/10.1016/j.jobe.2020.101491
  • Kuo, W.-T., Liu, C.-C., & Su, D-s. (2013). Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cement and Concrete Composites, 37, 328–335. https://doi.org/10.1016/j.cemconcomp.2013.01.001
  • Kurama, H., & Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture. Construction and Building Materials, 22(9), 1922–1928. https://doi.org/10.1016/j.conbuildmat.2007.07.008
  • Leo Samuel, D., Dharmasastha, K., Shiva Nagendra, S., & Prakash Maiya, M. (2017). Thermal comfort in traditional buildings composed of local and modern construction materials. International Journal of Sustainable Built Environment, 6(2), 463–475. https://doi.org/10.1016/j.ijsbe.2017.08.001
  • Li, Y., & Ren, S. (2011). Basic properties of building decorative materials. Woodhead Publishing Series in Civil and Structural Engineering (pp. 10–24).
  • Li, J., & Wang, J. (2019). Comprehensive utilization and environmental risks of coal gangue: A review. Journal of Cleaner Production, 239, 117946. https://doi.org/10.1016/j.jclepro.2019.117946
  • Limbachiya, M., Bostanci, S., & Kew, H. (2014). Suitability of BS EN 197-1 CEM II and CEM V cement for production of low carbon concrete. Construction and Building Materials, 71, 397–405. https://doi.org/10.1016/j.conbuildmat.2014.08.061
  • Mangi, S. A., Ibrahim, M. W., Jamaluddin, N., Arshad, M., & Jaya, R. P. (2019). Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious material. Engineering Science and Technology, An International Journal, 22(2), 515–522. https://doi.org/10.1016/j.jestch.2018.09.001
  • Martinez-Lage, I., Vazquez-Burgo, P., & Velay-Lizancos, M. (2020). Sustainability evaluation of concretes with mixed recycled aggregate based on holistic approach: Technical, economic and environmental analysis. Waste Management, 104, 9–19. https://doi.org/10.1016/j.wasman.2019.12.044
  • Megat Johari, M., Brooks, J. J., Kabir, S., & Rivard, P. (2011). Influence of supplementary cementitious materials on engineering properties of high strength concrete. Construction and Building Materials, 25(5), 2639–2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013
  • Mishra, G. (2020). Elements or Components of Green Building-Material, Water, Energy Health. Retrieved June 29, 2020, from The Constructor – Civil Engineering Home for Civil Engineers: https://theconstructor.org/building/elements-of-green-building/5375/
  • Mosaberpanah, M. A., Eren, O., & Tarassoly, A. R. (2019). The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology. Journal of Materials Research and Technology, 8(1), 804–811. https://doi.org/10.1016/j.jmrt.2018.06.011
  • Mostofinejad, D., Khademolmomenin, M., & Tayebani, B. (2021). Evaluating durability parameters of concrete containing limestone powder and slag under bacterial remediation. Journal of Building Engineering, 40, 102312. https://doi.org/10.1016/j.jobe.2021.102312
  • Muthusamy, K., Jamaludin, N. A., Kamaruzzaman, M. N., Ahmad, M. Z., Zamri, N. A., & Budiea, A. A. (2021). Compressive strength of palm oil clinker lightweight aggregate concrete containing coal bottom ash sand replacement. Materials Today: Proceedings, 46, 1724–1728. https://doi.org/10.1016/j.matpr.2020.07.527
  • Muthusamy, K., Rasid, M. H., Isa, N. N., Hamdan, N. H., Jamil, N. A., Budiea, A. A., & Ahmad, S. W. (2021). Mechanical properties and acid resistance of oil palm shell lightweight aggregate concrete containing coal bottom ash. Materials Today: Proceedings, 41, 47–50. https://doi.org/10.1016/j.matpr.2020.10.1001
  • Muthusamy, K., Rasid, M. H., Jokhio, G. A., Budiea, A., Hussin, M. W., & Mirza, J. (2020). Coal bottom ash as sand replacement in concrete: A review. Construction and Building Materials, 236, 117507. https://doi.org/10.1016/j.conbuildmat.2019.117507
  • Nakamura, K., Inoue, Y., & Komai, T. (2021). Consideration of strength development by three-dimensional visualization of porosity distribution in coal fly ash concrete. Journal of Building Engineering, 35, 101948. https://doi.org/10.1016/j.jobe.2020.101948
  • Neville, A. (2008). Properties of concrete. Pearson Education Limited.
  • Ngohpok, C., Sata, V., Satiennam, T., Klungboonkrong, P., & Chindaprasirt, P. (2018). Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. KSCE Journal of Civil Engineering, 22(4), 1369–1376. https://doi.org/10.1007/s12205-017-0144-6
  • Oancea, I., Bujoreanu, C., Budescu, M., Benchea, M., & Grădinaru, C. M. (2018). Considerations on sound absorption coefficient of sustainable concrete with different waste replacements. Journal of Cleaner Production, 203, 301–312. https://doi.org/10.1016/j.jclepro.2018.08.273
  • Opiso, E. M., Supremo, R. P., & Perodes, J. R. (2019). Effects of coal fly ash and fine saw dust on the performance of pervious concrete. Heliyon, 5(11), e02783. https://doi.org/10.1016/j.heliyon.2019.e02783
  • Oruji, S., Brake, N. A., Nalluri, L., & Guduru, R. K. (2017). Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Construction and Building Materials, 153, 317–326. https://doi.org/10.1016/j.conbuildmat.2017.07.088
  • Petrini, M., & Pozzebon, M. (2009). Managing sustainability with the support of business intelligence: Integrating socio-environmental indicators and organisational context. The Journal of Strategic Information Systems, 18(4), 178–191. https://doi.org/10.1016/j.jsis.2009.06.001
  • Plati, C. (2019). Sustainability factors in pavement materials, design, and preservation strategies: A literature review. Construction and Building Materials, 211, 539–555. https://doi.org/10.1016/j.conbuildmat.2019.03.242
  • Purnell, P., & Black, L. (2012). Embodied carbon dioxide in concrete: Variation with common mix design parameters. Cement and Concrete Research, 42(6), 874–877. https://doi.org/10.1016/j.cemconres.2012.02.005
  • Rafieizonooz, M., Salim, M. R., Mirza, J., Hussin, M. W., Salmiati, Khan, R., & Khankhaje, E. (2017). Toxicity characteristics and durability of concrete containing coal ash as substitute for cement and river sand. Construction and Building Materials, 143, 234–246. https://doi.org/10.1016/j.conbuildmat.2017.03.151
  • Rossit, G., & Lawson, M. (2012, September 21). Material LIFE: The Embodied Energy of Building Materials. Toronto.
  • Şanal, İ. (2018). Significance of concrete production in terms of carbondioxide emissions- social and environmental impacts. Journal of Polytechnic, 21(2), 369–378. https://doi.org/10.2339/politeknik.389590
  • Santos, B., Limbourg, S., & Carreira, J. (2015). The impact of transport policies on railroad intermodal freight competitiveness – The case of Belgium. Transportation Research Part D: Transport and Environment, 34, 230–244. https://doi.org/10.1016/j.trd.2014.10.015
  • Scope, C., Vogel, M., & Guenther, E. (2021). Greener, cheaper, or more sustainable: Reviewing sustainability assessment of maintenance strategies of concrete structures. Sustainable Production and Consumption, 26, 838–858. https://doi.org/10.1016/j.spc.2020.12.022
  • Shanmugan, S., Deepak, V., Nagaraj, J., Jangir, D., Jegan, S., & Palani, S. (2020). Enhancing the use of coal-fly ash in coarse aggregates concrete. Materials Today: Proceedings, 30, 174–182. https://doi.org/10.1016/j.matpr.2020.05.734
  • Shi, C.,Qu, B., &Provis, J. L. (2019). Recent progress in low-carbon binders. Cement and Concrete Research, 122, 227–250. 10.1016/j.cemconres.2019.05.009
  • Shishkin, A., Aguedal, H., Goel, G., Peculevica, J., Newport, D., & Ozolins, J. (2021). Influence of waste glass in the foaming process of open cell porous ceramic as filtration media for industrial wastewater. Journal of Cleaner Production, 282, 124546. https://doi.org/10.1016/j.jclepro.2020.124546
  • Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources, Conservation and Recycling., 67, 27–33. https://doi.org/10.1016/j.resconrec.2012.07.004
  • Singh, N., Haque, M. M., & Gupta, A. (2022). Reviewing mechanical performance of geopolymer concrete containing coal bottom ash. Materials Today: Proceedings, 65, 1449–1458. https://doi.org/10.1016/j.matpr.2022.04.408
  • Singh, N., Mithulraj, M., & Arya, S. (2018). Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: A review. Resources, Conservation & Recycling, 138, 257–271. https://doi.org/10.1016/j.resconrec.2018.07.025
  • The Concrete Centre. (2018). Concrete industry sustainability performance report. MPA, The Concrete Centre.
  • The Concrete Centre. (2019). Thermal mass explained. MPA, The Concrete Centre.
  • The Concrete Centre. (2020). Specifying sustainable concrete. MPA, The Concrete Centre.
  • Thi, N. N., Truong, S. B., & Minh, N. D. (2021). Reusing coal ash of thermal power plant in a pavement base course. Journal of King Saud University - Engineering Sciences, 33, 346–354.
  • Ting, T., Rahman, M., & Lau, H. (2020). Sustainable lightweight self-compacting concrete using oil palm shell and fly ash. Construction and Building Materials, 264, 120590. https://doi.org/10.1016/j.conbuildmat.2020.120590
  • Ulubeyli, G. Ç., Bilir, T., & Artir, R. (2017). Ceramic wastes usage as alternative aggregate in mortar and concrete. Periodicals of Engineering and Natural Sciences, 5(2), 194–201.
  • United Nations. (2015, December 12). Paris Agreement. United Nations.
  • Venkataraman, M., Mishra, R., & Militky, J. (2017). Comparative analysis of high performance thermal insulation materials. Journal of Textile Engineering & Fashion Technology, 2(3), 401-409. https://doi.org/10.15406/jteft.2017.02.00062
  • World Green Building Council. (2020). Rating tools - World Green Building. Home - World Green Building: https://www.worldgbc.org/rating-tools
  • Yilmaz, M., Tokyay, M., & Yaman, I. O. (2016). Cement Production by Cement-bonded Wood Particleboard Wastes. Adv. Cem. Res., 233–240. https://doi.org/10.1680/jadcr.15.00023.
  • Yüksel, İ., Bilir, T., Topcu, İ. B., & Gencel, O. (2017). Effects of bottom ash and granulated blast furnace slag as fine aggregate on abrasion resistance of concrete. Science and Engineering of Composite Materials, (2)24, 261–269. https://doi.org/10.1515/secm-2015-0101
  • Zuo, J., Jin, X.-H., & Flynn, L. (2012). Social sustainability in construction - an explorative study. International Journal of Construction Management, (2), 51–63. 12. https://doi.org/10.1080/15623599.2012.10773190

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.