107
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Micromechanical analysis of cement stabilized macadam material in uniaxial compression test

, , , , &
Pages 286-299 | Received 16 Jul 2022, Accepted 05 May 2023, Published online: 22 May 2023

References

  • Akcay, B. (2018). Some additional fields in this record are shown in regional languages from the following databases. KSCE Journal of Civil Engineering, 22(8), 3102–3111. https://doi.org/10.1007/s12205-017-0635-5
  • An, H. M., Liu, H. Y., & Han, H. Y. (2022). Hybrid finite-discrete element modelling of rock fracture process in intact and notched Brazilian disc tests. European Journal of Environmental and Civil Engineering, 26(12), 5843–5876. https://doi.org/10.1080/19648189.2021.1924863
  • Birck, G., Iturrioz, I., Riera, J. D., & Miguel, L. F. F. (2018). Influence of mesh orientation in discrete element method simulations of fracture processes. The Journal of Strain Analysis for Engineering Design, 53(6), 400–407. https://doi.org/10.1177/0309324718775284
  • Caballero, A., Carol, I., & Lopez, C. M. (2006). A meso-level approach to the 3D numerical analysis of cracking and fracture ofconcretematerials. Fatigue & Fracture of Engineering Materials and Structures, 29(12), 979–991. https://doi.org/10.1111/j.1460-2695.2006.01052.x
  • Chen, C. H., Bai, S. L., Huang, Y., Lam, L., Yao, Y., & Keer, L. M. (2021). 3D random packing algorithm of ellipsoidal particles based on the Monte Carlo method. Magazine of Concrete Research, 73(7), 343–355. https://doi.org/10.1680/jmacr.20.00228
  • Chen, G., Hao, Y. F., & Hao, H. (2015). 3D meso-scale modelling of concrete material in spall tests. Materials and Structures, 48(6), 1887–1899. https://doi.org/10.1617/s11527-014-0281-z
  • Chen, Y. B., Liu, E. L., & He, P. (2022). A binary-medium-based constitutive model for geological materials based on the statistical meso-breakage concept and mean-field homogenization. European Journal of Environmental and Civil Engineering, 22(10), 1–24. https://doi.org/10.1080/19648189.2022.2136763
  • Du, X. L., Jin, L., & Ma, G. W. (2013). A meso-scale analysis method for the simulation of nonlinear damage and failure behaviour of reinforcedconcretemembers. International Journal of Damage Mechanics, 22(6), 878–904. https://doi.org/10.1177/1056789512468915
  • Gan, Y. X., & Kamlah, M. (2010). Discrete element modelling of pebble beds: With application to uniaxial compression tests of ceramic breeder pebble beds. Journal of the Mechanics and Physics of Solids, 58(2), 129–144. https://doi.org/10.1016/j.jmps.2009.10.009
  • Gu, X. Q., Li, W. Y., Qian, J. G., & Xu, K. (2018). Discrete element modelling of the influence of inherent anisotropy on the shear behaviour of granular soils. European Journal of Environmental and Civil Engineering, 22(sup1), s1–s18. https://doi.org/10.1080/19648189.2017.1352030
  • Lin, J., & Wu, W. (2016). A comparative study between DEM and micropolarhypoplasticity. Powder Technology, 293, 121–129. https://doi.org/10.1016/j.powtec.2015.11.033
  • Nguyen, N. H., Bui, H. H., Nguyen, G. D., & Kodikara, J. (2017a). A cohesive damage-plasticity model for DEM and its application for numerical investigation of soft rock fracture properties. International Journal of Plasticity, 98, 175–196. https://doi.org/10.1016/j.ijplas.2017.07.008
  • Nguyen, T. T., Bui, H. H., Ngo, T. D., & Nguyen, G. D. (2017b). Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete. Materials & Design, 130, 103–119. https://doi.org/10.1016/j.matdes.2017.05.054
  • Pyo, S., & El-Tawil, S. (2013). Crack velocity-dependent dynamic tensile behaviour ofconcrete. International Journal of Impact Engineering, 55(5), 63–70. https://doi.org/10.1016/j.ijimpeng.2013.01.003
  • Qin, C., & Zhang, C. H. (2011). Numerical study of dynamic behaviour ofconcreteby meso-scale particle element modeling. International Journal of Impact Engineering, 38(12), 1011–1021. https://doi.org/10.1016/j.ijimpeng.2011.07.004
  • Saksala, T. (2018). Numerical modelling ofconcretefracture processes under dynamic loading: Meso-mechanicalapproach based on embedded discontinuity finite elements. Engineering Fracture Mechanics, 201, 282–297. https://doi.org/10.1016/j.engfracmech.2018.07.019
  • Shi, C., Li, D. J., Xu, W. Y., & Wang, R. B. (2015). Discrete element cluster modeling of complex mesoscopic particles for use with the particle flow code method. Granular Matter, 17(3), 377–387. https://doi.org/10.1007/s10035-015-0557-1
  • Snozzi, L., Gatuingt, F., & Molinari, J. F. (2012). Ameso-mechanicalmodel forconcreteunder dynamic tensile and compressive loading. International Journal of Fracture, 178(1–2), 179–194. https://doi.org/10.1007/s10704-012-9778-z
  • Wang, G. D., & Calvetti, F. (2022). 3D DEM investigation of the resistance of ice and frozen granular soils. European Journal of Environmental and Civil Engineering, 26(16), 8242–8262. https://doi.org/10.1080/19648189.2021.2021997
  • Wu, C., Li, W. B., & Shen, X. J. (2019). Meso-mechanical model of concrete under a penetration load. Defence Technology, 15(6), 936–948. https://doi.org/10.1016/j.dt.2019.04.003
  • Xu, L. Y., Yang, L. F., & Wen, H. M. (2022). The penetration and perforation of concretetargets: A 3D meso-mechanicalmodelling. International Journal of Impact Engineering, 159(1), 104038. https://doi.org/10.1016/j.ijimpeng.2021.104038
  • Xu, P. B., Xu, H., & Wen, H. M. (2016). 3D meso-mechanical modeling of concrete spall tests. International Journal of Impact Engineering, 97(11), 46–56. https://doi.org/10.1016/j.ijimpeng.2016.06.005
  • Yan, Z. Y., Ge, H. E., Guo, S. H., Wu, X. Y., & Zhao, G. F. (2022). Flexural strength test and meso-mechanicalevolution behaviour ofcementconcretebased on discrete element method. Computational Particle Mechanics, 9(1), 85–99. https://doi.org/10.1007/s40571-021-00395-0
  • Zhang, N., Zhao, S. W., Evan, S. T. M., Du, Y., & Lian, Y. S. (2022). Micromechanical behaviors and fabric within the immediate influence zone of granular-continuum interfaces. European Journal of Environmental and Civil Engineering, 26(3), 1158–1181. https://doi.org/10.1080/19648189.2019.1702901
  • Zhao, G., & Yan, Z. (2022). Research on response of temperature change to pavement structure layer based on micromechanics. International Journal of Pavement Engineering, 23(4), 1271–1281. https://doi.org/10.1080/10298436.2020.1798006
  • Zhu, B. C., & Feng, R. Q. (2019). Investigation of a boundary simulation of continuity using the discrete solid element method. Advances in Mechanical Engineering, 11(1), 168781401882239. https://doi.org/10.1177/1687814018822397

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.