144
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A comparison index in mortar repair treatments by microbiologically induced carbonate precipitation and its evaluation by a non-destructive technique

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 534-546 | Received 15 Apr 2022, Accepted 23 May 2023, Published online: 06 Jun 2023

References

  • Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  • Li, M., Wen, K., Li, Y., & Zhu, L. (2018). Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment. Geomicrobiology Journal, 35(1), 15–22. https://doi.org/10.1080/01490451.2017.1303553
  • Achal, V., & Mukherjee, A. (2015). A review of microbial precipitation for sustainable construction. Construction and Building Materials, 93, 1224–1235. https://doi.org/10.1016/j.conbuildmat.2015.04.051
  • Achal, V., Mukherjee, A., & Reddy, M. S. (2011). Effect of calcifying bacteria on permeation properties of concrete structures. Journal of Industrial Microbiology & Biotechnology, 38(9), 1229–1234. https://doi.org/10.1007/s10295-010-0901-8
  • ACi E-701. (2001). 1– ACI Education Bulletin E3-01 Cementitious Materials for Concrete. Concrete. 25.
  • Al Omari, M. M. H., Rashid, I. S., Qinna, N. A., Jaber, A. M., & Badwan, A. A. (2016). Calcium carbonate. In: Profiles of drug substances, excipients and related methodology. https://doi.org/10.1016/bs.podrm.2015.11.003
  • Allaire, J. J. (2015). RStudio: Integrated development environment for R. Journal of Wildlife Management, 75.
  • Appanna, V. D., Anderson, S. L., & Skakoon, T. (1997). Biogenesis of calcite: A biochemical model. Microbiological Research, 152(4), 341–343. https://doi.org/10.1016/S0944-5013(97)80049-3
  • Araújo, M., Chatrabhuti, S., Gurdebeke, S., Alderete, N., Van Tittelboom, K., Raquez, J.-M., Cnudde, V., Van Vlierberghe, S., De Belie, N., & Gruyaert, E. (2018). Poly(methyl methacrylate) capsules as an alternative to the proof-of-concept’’ glass capsules used in self-healing concrete. Cement and Concrete Composites, 89, 260–271. https://doi.org/10.1016/j.cemconcomp.2018.02.015
  • Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4–5), 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3
  • Başaran Bundur, Z., Bae, S., Kirisits, M. J., & Ferron, R. D. (2017). Biomineralization in self-healing cement-based materials: Investigating the temporal evolution of microbial metabolic state and material porosity. Journal of Materials in Civil Engineering, 29(8), 70–79. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001838
  • Camara, L., Wons, M., Esteves, I., & Medeiros-Junior, R. (2019). Monitoring the self-healing of concrete from the ultrasonic pulse velocity. Journal of Composites Science, 3(1), 16. https://doi.org/10.3390/jcs3010016
  • De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  • De Muynck, W., Debrouwer, D., De Belie, N., & Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 38(7), 1005–1014. https://doi.org/10.1016/j.cemconres.2008.03.005
  • Dhami, N. K., Reddy, M. S., & Mukherjee, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314. https://doi.org/10.3389/fmicb.2013.00314
  • Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous ammonia equilibrium calculations: Effect of pH and temperature. Journal of the Fisheries Research Board of Canada, 32(12), 2379–2383. https://doi.org/10.1139/f75-274
  • Fang, G., Liu, Y., Qin, S., Ding, W., Zhang, J., Hong, S., Xing, F., & Dong, B. (2018). Visualized tracing of crack self-healing features in cement/microcapsule system with X-ray microcomputed tomography. Construction and Building Materials, 179, 336–347. https://doi.org/10.1016/j.conbuildmat.2018.05.193
  • Gupta, S., Pang, S. D., & Kua, H. W. (2017). Autonomous healing in concrete by bio-based healing agents – A review. Construction and Building Materials, 146, 419–428. https://doi.org/10.1016/j.conbuildmat.2017.04.111
  • Hammes, F., Boon, N., De Villiers, J., Verstraete, W., Siciliano, S. D., & De Villiers, J. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation strain-specific ureolytic microbial calcium carbonate precipitation. Applied and Environmental Microbiology, 69(8), 4901–4909. https://doi.org/10.1128/AEM.69.8.4901
  • Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Bio/Technology, 1(1), 3–7. https://doi.org/10.1023/A:1015135629155
  • Hanna, R. D., & Ketcham, R. A. (2017). X-ray computed tomography of planetary materials: A primer and review of recent studies. Geochemistry, 77(4), 547–572. https://doi.org/10.1016/j.chemer.2017.01.006
  • Hermanek, P., Rathore, J. S., Aloisi, V., & Carmignato, S. (2018). Principles of X-ray computed tomography. In: S. Carmignato, W. Dewulf, & R. Leach (eds.), Industrial X-ray computed tomography (pp. 25–67). Springer International Publishing. https://doi.org/10.1007/978-3-319-59573-3_2
  • Kalantary, F., & Kahani, M. (2019). Optimization of the biological soil improvement procedure. International Journal of Environmental Science and Technology, 16(8), 4231–4240. https://doi.org/10.1007/s13762-018-1821-9
  • Kaur, N. P., Majhi, S., Dhami, N. K., & Mukherjee, A. (2020). Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials, 242, 118151. https://doi.org/10.1016/j.conbuildmat.2020.118151
  • Krishnapriya, S., Venkatesh Babu, D. L., & G, P. A. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research, 174, 48–55. https://doi.org/10.1016/j.micres.2015.03.009
  • Kumari, C., Das, B., Jayabalan, R., Davis, R., & Sarkar, P. (2017). Effect of nonureolytic bacteria on engineering properties of cement mortar. Journal of Materials in Civil Engineering, 29(6), 06016024. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001828
  • Lauchnor, E. G., Topp, D. M., Parker, A. E., & Gerlach, R. (2015). Whole cell kinetics of ureolysis by Sporosarcina pasteurii. Journal of Applied Microbiology, 118(6), 1321–1332. https://doi.org/10.1111/jam.12804
  • Li, W., Chen, W.-S., Zhou, P.-P., Cao, L., & Yu, L.-J. (2013). Influence of initial pH on the precipitation and crystal morphology of calcium carbonate induced by microbial carbonic anhydrase. Colloids and Surfaces. B, Biointerfaces, 102, 281–287. https://doi.org/10.1016/J.COLSURFB.2012.08.042
  • Lors, C., Ducasse-Lapeyrusse, J., Gagné, R., & Damidot, D. (2017). Microbiologically induced calcium carbonate precipitation to repair microcracks remaining after autogenous healing of mortars. Construction and Building Materials, 141, 461–469. https://doi.org/10.1016/j.conbuildmat.2017.03.026
  • Luo, M., Qian, C. X., & Li, R. Y. (2015). Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Construction and Building Materials, 87, 1–7. https://doi.org/10.1016/j.conbuildmat.2015.03.117
  • Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. Epidemiology and Infection, 38(6), 732–749. https://doi.org/10.1017/S002217240001158X
  • Minto, J. M., Tan, Q., Lunn, R. J., El Mountassir, G., Guo, H., & Cheng, X. (2018). ‘Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation. Construction and Building Materials, 180, 44–54. https://doi.org/10.1016/j.conbuildmat.2018.05.200
  • Montaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and potential biocementation of calcite precipitation inducing bacteria from Colombian buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/s00284-017-1373-0
  • Muhammad, N. Z., Shafaghat, A., Keyvanfar, A., Abd. Majid, M. Z., Ghoshal, S. K., Mohammadyan Yasouj, S. E., Ganiyu, A. A., Samadi Kouchaksaraei, M., Kamyab, H., Taheri, M. M., Rezazadeh Shirdar, M., & McCaffer, R. (2016). Tests and methods of evaluating the self-healing efficiency of concrete: A review. Construction and Building Materials. 112, 1123–1132. https://doi.org/10.1016/j.conbuildmat.2016.03.017
  • Noguchi, K., Abel, R. S., Marmolejo-Ramos, F., & Konietschke, F. (2020). Nonparametric multiple comparisons. Behavior Research Methods, 52(2), 489–502. https://doi.org/10.3758/s13428-019-01247-9
  • Noguchi, K., Gel, Y. R., Brunner, E., & Konietschke, F. (2012). nparLD : An R software package for the nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical Software, 50(12). https://doi.org/10.18637/jss.v050.i12
  • Omoregie, A. I., Senian, N., Li, P. Y., Hei, N. L., Leong, D. O. E., Ginjom, I. R. H., & Nissom, P. M. (2016). Ureolytic bacteria isolated from Sarawak limestone caves show high urease enzyme activity comparable to that of Sporosarcina pasteurii (DSM 33). Malaysian Journal of Microbiology, 12, 463–470
  • Park, S. J., Park, Y. M., Chun, W. Y., Kim, W. J., & Ghim, S. Y. (2010). Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology, 20, 782–788. https://doi.org/10.4014/jmb.0911.11015
  • Reddy, B. M. S., & Revathi, D. (2019). An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Materials Today: Proceedings, 19, 803–809. https://doi.org/10.1016/j.matpr.2019.08.135
  • Rong, H., Qian, C.-X., & Li, L. (2012). Study on microstructure and properties of sandstone cemented by microbe cement. Construction and Building Materials, 36, 687–694. https://doi.org/10.1016/j.conbuildmat.2012.06.063
  • Seifan, M., Samani, A. K., & Berenjian, A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101(8), 3131–3142. https://doi.org/10.1007/s00253-017-8109-8
  • Sham, E., Mantle, M. D., Mitchell, J., Tobler, D. J., Phoenix, V. R., & Johns, M. L. (2013). Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements. Journal of Contaminant Hydrology, 152, 35–43. https://doi.org/10.1016/J.JCONHYD.2013.06.003
  • Silva-Castro, G. A., Uad, I., Rivadeneyra, A., Vilchez, J. I., Martin-Ramos, D., González-López, J., & Rivadeneyra, M. A. (2013). Carbonate precipitation of bacterial strains isolated from sediments and seawater: Formation mechanisms. Geomicrobiology Journal, 30(9), 840–850. https://doi.org/10.1080/01490451.2013.777492
  • Tamayo-Figueroa, D., Paola; de Brito Brandão, P. F., & Lizarazo Marriaga, J. (2023). Raw data of A comparison index in mortar repair treatments by microbiologically induced carbonate precipitation and its evaluation by a non-destructive technique. Mendeley Data, V1. https://doi.org/10.17632/sd39knh56h.1,1-1
  • Tziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080
  • Van Tittelboom, K., De Belie, N., De Muynck, W., & Verstraete, W. (2010). Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 40(1), 157–166. https://doi.org/10.1016/j.cemconres.2009.08.025
  • Vijay, K., Murmu, M., & Deo, S. V. (2017). Bacteria based self healing concrete – A review. Construction and Building Materials, 152, 1008–1014. https://doi.org/10.1016/j.conbuildmat.2017.07.040
  • Wang, J. Y., De Belie, N., & Verstraete, W. (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. Journal of Industrial Microbiology & Biotechnology, 39(4), 567–577. https://doi.org/10.1007/s10295-011-1037-1
  • Wang, J. Y., Snoeck, D., Van Vlierberghe, S., Verstraete, W., & De Belie, N. (2014). Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials, 68, 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018
  • Wang, J., Dewanckele, J., Cnudde, V., Van Vlierberghe, S., Verstraete, W., & De Belie, N. (2014). X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement and Concrete Composites, 53, 289–304. https://doi.org/10.1016/j.cemconcomp.2014.07.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.