165
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Pomegranate peel extract as a sustainable corrosion inhibitor on steel in a simulated concrete pore solution and mortar: Experimental and theoretical studies

, &
Pages 684-717 | Received 05 Sep 2022, Accepted 29 May 2023, Published online: 05 Jun 2023

References

  • Abboud, Y., Tanane, O., Bouari, A. E., Salghi, R., Hammouti, B., Chetouani, A., & Jodeh, S. (2016). Corrosion inhibition of carbon steel in hydrochloric acid solution using pomegranate leave extracts. Corrosion Engineering, Science and Technology, 51(8), 1–9. https://doi.org/10.1179/1743278215Y.0000000058
  • Abod, B. M., Al-Alawy, R. M., Khadom, A. A., & Kamar, F. H. (2019). Experimental and theoretical studies for tobacco leaf extract as an eco-friendly inhibitor for steel in saline water. Journal of Bio- and Tribo-Corrosion, 5(3), 75. https://doi.org/10.1007/s40735-019-0268-y
  • AFPC-AFREM. (1997, 11 et 12 décembre).Méthodes Recommandées pour la Mesure des Grandeurs Associées à la Durabilité [Recommended Methods for the Measurement of Parameters Associated with Durability]. Compte-rendu des Journées Techniques “Durabilité des bétons”, Toulouse, 283 p.
  • Alexander, M., & Mackechnie, J., & Ballim, Y. (1999). Guide to the use of durability indexes for achieving durability in concrete structures. Research Monographs, 2, 5–11.
  • Alibakhshi, E., Ramezanzadeh, M., Haddadi, S. A., Bahlakeh, G., Ramezanzadeh, B., & Mahdavian, M. (2019). Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution. Journal of Cleaner Production, 210, 660–672. https://doi.org/10.1016/j.jclepro.2018.11.053
  • Alvarez, P. E., Fiori-Bimbi, M. V., Neske, A., Brandán, S. A., & Gervasi, C. A. (2018). Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. Journal of Industrial and Engineering Chemistry, 58, 92–99. https://doi.org/10.1016/j.jiec.2017.09.012
  • Al-Zoreky, N. S. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Journal of Food Microbiology, 134(3), 244–248. https://doi.org/10.1016/j.ijfoodmicro.2009.07.002
  • Andrade, C., & Alonso, C. (2004). Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Materials and Structures, 37(9), 623–643. https://doi.org/10.1007/BF02483292
  • Anitha, R., Chitra, S., Hemapriya, V., Chung, I.-M., Kim, S.-H., & Prabakaran, M. (2019). Implications of eco-addition inhibitor to mitigate corrosion in reinforced steel embedded in concrete. Construction and Building Materials, 213, 246–256. https://doi.org/10.1016/j.conbuildmat.2019.04.046
  • Asaad, M. A., Ismail, M., Tahir, M. M., Huseien, G. F., Raja, P. B., & Asmara, Y. P. (2018). Enhanced corrosion resistance of reinforced concrete: Role of emerging eco-friendly Elaeisguineensis/silver nanoparticles inhibitor. Construction and Building Materials, 188, 555–568. https://doi.org/10.1016/j.conbuildmat.2018.08.140
  • Asipita, S. A., Ismail, M., Majid, M. Z. A., Majid, Z. A., Abdullah, C., & Mirza, J. (2014). Green Bambusa arundinacea leaves extract as a sustainable corrosion inhibitor in steel reinforced concrete. Journal of Cleaner Production, 67, 139–146. https://doi.org/10.1016/j.jclepro.2013.12.033
  • ASTM C1585. (2020). Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM International. https://doi.org/10.1520/C1585-20
  • ASTM C876. (2022). Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. ASTM International. https://doi.org/10.1520/C0876-22B
  • ASTM G59-97. (2020). Standard test method for conducting potentiodynamic polarization resistancemeasurements. ASTM International. https://doi.org/10.1520/G0059-97R20
  • Ayah, E., Orubite-Okorosaye, K., & James, A. O. (2018). Methanolic and aqueous extracts of corn silk as corrosion inhibitor for mild steel in hydrochloric acid at different temperatures, Journal of Applied Sciences and Environmental Management, 22(3), 439–446. https://doi.org/10.4314/jasem.v22i3.26
  • Banerjee, S., Srivastava, V., & Singh, M. M. (2012). Chemically modified natural polysaccharide as green corrosion inhibitor for mild steel in acidic medium. Corrosion Science, 59, 35–41. https://doi.org/10.1016/j.corsci.2012.02.009
  • Behpour, M., Ghoreishi, S. M., Khayatkashani, M., & Soltani, N. (2012). Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents. Materials Chemistry and Physics, 131(3), 621–633. https://doi.org/10.1016/j.matchemphys.2011.10.027
  • Bhawsar, J., Jain, P. K., & Jain, P. (2015). Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium. Alexandria Engineering Journal, 54(3), 769–775. https://doi.org/10.1016/j.aej.2015.03.022
  • Bhuvaneswari, T. K., Jeyaprabha, C., & Arulmathi, P. (2020). Corrosion inhibition of mild steel in hydrochloric acid by leaves extract of Tephrosia purpurea. Journal of Adhesion Science and Technology, 34(22), 2424–2447. https://doi.org/10.1080/01694243.2020.1766395
  • Brixi, N. K., Cherif, R., Bezzar, A., Sail, L., & Aït-Mokhtar, A. (2022). Effectiveness of henna leaves extract and its derivatives as green corrosion inhibitors of reinforcement steel exposed to chlorides. European Journal of Environmental and Civil Engineering, 26(12), 5912–5930. https://doi.org/10.1080/19648189.2021.1925159
  • Brixi, N. K., Sail, L., & Bezzar, A. (2022). Application of ascorbic acid as green corrosion inhibitor of reinforced steel in concrete pore solutions contaminated with chlorides. Journal of Adhesion Science and Technology, 36(11), 1176–1199. https://doi.org/10.1080/01694243.2021.1962090
  • Brown, E. J., Khodr, H., Hider, C. R., & Rice-Evans, C. A. (1998). Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochemical Journal, 330(3), 1173–1178. https://doi.org/10.1042/bj3301173
  • BS EN 12390-3. (2019). Testing hardened concrete. Compressive strength of test specimens. British Standards Institution.
  • Cheng, Y. F., & Luo, J. L. (2000). A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions. Applied Surface Science, 167(1-2), 113–121. https://doi.org/10.1016/S0169-4332(00)00534-1
  • De Larrard, F. (2002). Construire en béton: L ‘essentiel sur les matériaux. Presse de l‘ENPC.
  • Dehghani, A., Bahlakeh, G., Ramezanzadeh, B., & Ramezanzadeh, M. (2019). Electronic/atomic level fundamental theoretical evaluations combined with electrochemical/surface examinations of Tamarindus indiaca aqueous extract as a new green inhibitor for mild steel in acidic solution (HCl 1 M). Journal of the Taiwan Institute of Chemical Engineers, 102, 349–377. https://doi.org/10.1016/j.jtice.2019.05.006
  • Eddy, N. O., & Ebenso, E. E. (2008). Adsorption and inhibitive properties of ethanol extracts of Musa sapientum peels as a green corrosion inhibitor for mild steel in H2SO4, African Journal of Pure and Applied Chemistry, 2(6), 046–054. http://www.academicjournals.org/AJPAC
  • El Adnani, Z., Mcharfi, M., Sfaira, M., Benzakour, M., Benjelloun, A. T., & Ebn Touhami, M. (2013). DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corrosion Science, 68, 223–230. https://doi.org/10.1016/j.corsci.2012.11.020
  • Etteyeb, N., Dhouibi, L., Sanchez, M., Alonso, C., Andrade, C., & Triki, E. (2007). Electrochemical study of corrosion inhibition of steel reinforcement in alkaline solutions containing phosphatesbased components. Journal of Materials Science, 42(13), 4721–4730. https://doi.org/10.1007/s10853-006-0880-3
  • Etteyeb, N., & Nóvoa, X. R. (2016). Inhibition effect of some trees cultivated in arid regions against the corrosion of steel reinforcement in alkaline chloride solution. Corrosion Science, 112, 471–482. https://doi.org/10.1016/j.corsci.2016.07.016
  • Fazayel, A. S., Khorasani, M., & Sarabi, A. A. (2018). The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution. Applied Surface Science, 441, 895–913. https://doi.org/10.1016/j.apsusc.2018.02.012
  • Feng, X., Shi, R., Lu, X., Xu, Y., Huang, X., & Chen, D. (2017). The corrosion inhibition efficiency of aluminum tripolyphosphate on carbon steel in carbonated concrete pore solution. Corrosion Science, 124, 150–159. https://doi.org/10.1016/j.corsci.2017.05.018
  • Fernandes, C. M., Ferreira Fagundes, T. d. S., Dos Santos, N. E., Do Amaral, B. S., Cass, Q. B., Valverde, A. L., Silva, J. C. M., Alves, O. C., & Ponzio, E. A. (2020). Marine octocoral phyllogorgia dilatata: Identification of sesquiterpenes and activity as a natural and renewable corrosion inhibitor. Analytical and Bioanalytical Electrochemistry, 12(4), 437–457.
  • Fernandes, C. M., Ferreira Fagundes, T. d S., Escarpini dos Santos, N., Shewry de M. Rocha, T., Garrett, R., Borges, R. M., Muricy, G., Valverde, A. n. d L., & Ponzio, E. A. (2019). Ircinia strobilina crude extract as corrosion inhibitor for mild steel in acid medium. Electrochimica Acta, 312, 137–148. https://doi.org/10.1016/j.electacta.2019.04.148
  • Figueira, R. B. (2017). Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Applied Sciences, 7(11), 1157. https://doi.org/10.3390/app7111157
  • Fouda, A. S., Emam, A., Refat, R., & Nageeb, M. M. (2019). Eco-friendly plant extract of Medicago sativa (Alfalfa) as corrosion inhibitor for carbon steel in marine environment. Surface Engineering and Applied Electrochemistry, 55(3), 294–303. https://doi.org/10.3103/S1068375519030074
  • Foulkes, F. R., & McGrath, P. (1999). A rapid cyclic voltammetric method for studying cement factors affecting the corrosion of reinforced concrete. Cement and Concrete Research, 29(6), 873–883. https://doi.org/10.1016/S0008-8846(99)00056-3
  • Freire, L., Nóvoa, X. R., Montemor, M. F., & Carmezim, M. J. (2009). Study of passive films formed on mild steel in alkaline media by the application of anodic potentials. Materials Chemistry and Physics, 114(2-3), 962–972. https://doi.org/10.1016/j.matchemphys.2008.11.012
  • Ghailane, T., Balkhmima, R. A., Ghailane, R., Souizi, A., Touir, R., Ebn Touhami, M., Marakchi, K., & Komiha, N. (2013). Experimental and theoretical studies for mild steel corrosion inhibition in 1M HCl by two new benzothiazine derivatives. Corrosion Science, 76, 317–324. https://doi.org/10.1016/j.corsci.2013.06.052
  • Görgüç, A., Gençdağ, E., & Yılmaz, F. M. (2022). Industrial pomegranate wastes and their functional benefits in novel food formulations. In M. F. Ramadan & M. A. Farag (Eds.), Mediterranean fruits bio-wastes: Chemistry, functionality and technological applications (pp. 721–738). Springer International Publishing. https://doi.org/10.1007/978-3-030-84436-3_31
  • Haddadi, S. A., Alibakhshi, E., Bahlakeh, G., Ramezanzadeh, B., & Mahdavian, M. (2019). A detailed atomic level computational and electrochemical exploration of the Juglans regia green fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution. Journal of Molecular Liquids, 284, 682–699. https://doi.org/10.1016/j.molliq.2019.04.045
  • Harilal, M., Kamde, D. K., Uthaman, S., George, R. P., Pillai, R. G., Philip, J., & Albert, S. K. (2021). The chloride-induced corrosion of a fly ash concrete with nanoparticles and corrosion inhibitor. Construction and Building Materials, 274, 122097. https://doi.org/10.1016/j.conbuildmat.2020.122097
  • Hassoune, M., Bezzar, A., Sail, L., & Ghomari, F. (2018). Corrosion inhibition of carbon steel by N,N′-Dimethylaminoethanol in simulated concrete pore solution contaminated with NaCl. Journal of Adhesion Science and Technology, 32(1), 68–90. https://doi.org/10.1080/01694243.2017.1341190
  • Hassoune, M., Bezzar, A., Sail, L., & Ghomari, F. (2021). Chloride threshold value to initiate steel corrosion in simulated concrete pore solution, and the effectiveness of DMEA as an amino-alcohol-based corrosion inhibitor. Journal of Adhesion Science and Technology, 35(5), 504–521. https://doi.org/10.1080/01694243.2020.1816775
  • Jamil, H. E., Shriri, A., Boulif, R., Montemor, M. F., & Ferreira, M. G. S. (2005). Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor. Cement and Concrete Composites, 27(6), 671–678. https://doi.org/10.1016/j.cemconcomp.2004.09.019
  • Jayaprakash, A., & Sangeetha, R. (2015). Phytochemical screening of Punica granatum Linn. peel extracts. Journal of Academia and Industrial Research, 4(5), 160–162.
  • Joiret, S., Keddam, M., Nóvoa, X. R., Pérez, M. C., Rangel, C., & Takenouti, H. (2002). Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cement and Concrete Composites, 24(1), 7–15. https://doi.org/10.1016/S0958-9465(01)00022-1
  • Ju, H., Kai, Z.-P., & Li, Y. (2008). Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation. Corrosion Science, 50(3), 865–871. https://doi.org/10.1016/j.corsci.2007.10.009
  • Karzazi, Y., Belghiti, M., El-Hajjaji, F., Boudra, S., & Hammouti, B. (2016). Density functional theory modeling and Monte Carlo simulation assessment of inhibition performance of two quinoxaline derivatives for steel corrosion. Journal of Materials and Environmental Science, 7(11), 4011–4023.
  • Khaled, K. F. (2010). Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques. Electrochimica Acta, 55(22), 6523–6532. https://doi.org/10.1016/j.electacta.2010.06.027
  • Kokalj, A. (2021). Molecular modeling of organic corrosion inhibitors: Calculations, pitfalls, and conceptualization of molecule–surface bonding. Corrosion Science, 193, 109650. https://doi.org/10.1016/j.corsci.2021.109650
  • Koleva, D. A. (2011). Electrochemical behavior of corroded and protected construction steel in cement extract, Materials and Corrosion, 62(3), 240–251. https://doi.org/10.1002/maco.200905488
  • Kumar, D., Jain, V., & Rai, B. (2018). Unravelling the mechanisms of corrosion inhibition of iron by henna extract: A density functional theory study. Corrosion Science, 142, 102–109. https://doi.org/10.1016/j.corsci.2018.07.011
  • Kumar, K. A., & Vijayalakshmi, K. (2013). In vitro anti-microbial activity and phytochemical analysis of selected fruit wastes. International Journal of Current Microbiology and Applied Sciences, 2(5), 196–204.
  • Li, L., Zhang, X., Lei, J., He, J., Zhang, S., & Pan, F. (2012). Adsorption and corrosion inhibition of Osmanthus fragran leaves extract on carbon steel. Corrosion Science, 63, 82–90. https://doi.org/10.1016/j.corsci.2012.05.026
  • Liao, L. L., Mo, S., Luo, H. Q., & Li, N. B. (2017). Longan seed and peel as environmentally friendly corrosion inhibitor for mild steel in acid solution: Experimental and theoretical studies. Journal of Colloid and Interface Science, 499, 110–119. https://doi.org/10.1016/j.jcis.2017.03.091
  • Lim, T. K. (2013). Punicagranatum. In T. K. Lim (Ed.), Edible medicinal and non-medicinal plants: Volume 5, fruits (pp. 136–194). Springer Netherlands.
  • Liu, C. (2022). Trans-1, 4-polyisoprene (TPI)) extracted from Eucommia bark as natural corrosion inhibitor for carbon steel in the simulated concrete pore solution. International Journal of Electrochemical Science, 17, ArticleID:220615. https://doi.org/10.20964/2022.06.34
  • Liu, Y., Song, Z., Wang, W., Jiang, L., Zhang, Y., Guo, M., Song, F., & Xu, N. (2019). Effect of ginger extract as green inhibitor on chloride-induced corrosion of carbon steel in simulated concrete pore solutions. Journal of Cleaner Production, 214, 298–307. https://doi.org/10.1016/j.jclepro.2018.12.299
  • M’hiri, N., Veys-Renaux, D., Rocca, E., Ioannou, I., Boudhrioua, N. M., & Ghoul, M. (2016). Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds. Corrosion Science, 102, 55–62. https://doi.org/10.1016/j.corsci.2015.09.017
  • Mahdi, S. M. (2015). Study the pomegranate’s peel powder as a Natural Inhibitor for Mild steel corrosion. International Journal of Materials Chemistry and Physics, 1(1), 74–81.
  • Majd, M. T., Ramezanzadeh, M., Bahlakeh, G., & Ramezanzadeh, B. (2020). Probing molecular adsorption/interactions and anti-corrosion performance of poppy extract in acidic environments. Journal of Molecular Liquids, 304, 112750. https://doi.org/10.1016/j.molliq.2020.112750
  • Marsoul, A., Ijjaali, M., Elhajjaji, F., Taleb, M., Salim, R., & Boukir, A. (2020). Phytochemical screening, total phenolic and flavonoid methanolic extract of pomegranate bark (Punica granatum L): Evaluation of the inhibitory effect in acidic medium 1 M HCl. Materials Today: Proceedings, 27, 3193–3198. https://doi.org/10.1016/j.matpr.2020.04.202
  • Martinez, S., Valek, L., & Oslaković, I. S. (2007). Adsorption of organic anions on low-carbon steel in saturated Ca(OH)[sub 2] and the HSAB principle. Journal of the Electrochemical Society, 154(11), C671. https://doi.org/10.1149/1.2777882
  • Millard, S. G., Law, D., Bungey, J. H., & Cairns, J. (2001). Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete. NDT & E International, 34(6), 409–417. https://doi.org/10.1016/S0963-8695(01)00008-1
  • Naderi, R., Bautista, A., Velasco, F., Soleimani, M., & Pourfath, M. (2022). Green corrosion inhibition for carbon steel reinforcement in chloride-polluted simulated concrete pore solution using Urtica Dioica extract. Journal of Building Engineering, 58, 105055. https://doi.org/10.1016/j.jobe.2022.105055
  • Negi, P. S., Jayaprakasha, G. K., & Jena, B. S. (2003). Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chemistry, 80(3), 393–397. https://doi.org/10.1016/S0308-8146(02)00279-0
  • Neville, A. (1995). Chloride attack of reinforced concrete: An overview. Materials and Structures, 28(2), 63–70. https://doi.org/10.1007/BF02473172
  • Obot, I. B., Obi-Egbedi, N. O., & Umoren, S. A. (2009). The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corrosion Science, 51(2), 276–282. https://doi.org/10.1016/j.corsci.2008.11.013
  • Oguzie, E. E. (2008). Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel. Corrosion Science, 50(11), 2993–2998. https://doi.org/10.1016/j.corsci.2008.08.004
  • Oguzie, E. E., Enenebeaku, C. K., Akalezi, C. O., Okoro, S. C., Ayuk, A. A., & Ejike, E. N. (2010). Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media. Journal of Colloid and Interface Science, 349(1), 283–292. https://doi.org/10.1016/j.jcis.2010.05.027
  • Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of anthocleistadjalonensis on steel-reinforcement corrosion in concrete immersed in saline/marine simulating-environment. Transactions of the Indian Institute of Metals, 67(6), 959–969. https://doi.org/10.1007/s12666-014-0424-5
  • Palanisamy, S. P., Maheswaran, G., Kamal, C., & Venkatesh, G. (2016). Prosopis juliflora—A green corrosion inhibitor for reinforced steel in concrete. Research on Chemical Intermediates, 42(12), 7823–7840. https://doi.org/10.1007/s11164-016-2564-1
  • Palanisamy, S. P., Maheswaran, G., Selvarani, A. G., Kamal, C., & Venkatesh, G. (2018). Ricinus communis – A green extract for the improvement of anti-corrosion and mechanical properties of reinforcing steel in concrete in chloride media. Journal of Building Engineering, 19, 376–383. https://doi.org/10.1016/j.jobe.2018.05.020
  • Plaza, M., Domínguez-Rodríguez, G., Castro-Puyana, M., & Marina, M. L. (2018). 6 - Polyphenols analysis and related challenges. In C. M. Galanakis (Ed.), Polyphenols: Properties, recovery, and applications (pp. 177–232): Woodhead Publishing.
  • Prakash, C. V. S., & Prakash, I. (2011). Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel-a review. International Journal of Research in Chemistry and Environment, 1(1), 1–18.
  • Qiang, Y., Zhang, S., Tan, B., & Chen, S. (2018). Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corrosion Science, 133, 6–16. https://doi.org/10.1016/j.corsci.2018.01.008
  • Ramezanzadeh, M., Sanaei, Z., Bahlakeh, G., & Ramezanzadeh, B. (2018). Highly effective inhibition of mild steel corrosion in 3.5% NaCl solution by green Nettle leaves extract and synergistic effect of eco-friendly cerium nitrate additive: Experimental, MD simulation and QM investigations. Journal of Molecular Liquids, 256, 67–83. https://doi.org/10.1016/j.molliq.2018.02.021
  • Roukas, T., & Kotzekidou, P. (2020). Pomegranate peel waste: A new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions. Environmental Science and Pollution Research International, 27(12), 13105–13113. https://doi.org/10.1007/s11356-020-07928-9
  • Saker, S., Aliouane, N., Hammache, H., Chafaa, S., & Bouet, G. (2015). Tetraphosphonic acid as eco-friendly corrosion inhibitor on carbon steel in 3% NaCl aqueous solution. Ionics, 21(7), 2079–2090. https://doi.org/10.1007/s11581-015-1377-3
  • Sanaei, Z., Bahlakeh, G., Ramezanzadeh, B., & Ramezanzadeh, M. (2019). Application of green molecules from Chicory aqueous extract for steel corrosion mitigation against chloride ions attack; the experimental examinations and electronic/atomic level computational studies. Journal of Molecular Liquids, 290, 111176. https://doi.org/10.1016/j.molliq.2019.111176
  • Shahkoomahally, S., Khadivi, A., Brecht, J. K., & Sarkhosh, A. (2021). Chemical and physical attributes of fruit juice and peel of pomegranate genotypes grown in Florida, USA. Food Chemistry, 342, 128302. https://doi.org/10.1016/j.foodchem.2020.128302
  • Shalabi, K., & Nazeer, A. A. (2019). Ethoxylates nonionic surfactants as promising environmentally safe inhibitors for corrosion protection of reinforcing steel in 3.5% NaCl saturated with Ca(OH)2 solution. Journal of Molecular Structure, 1195, 863–876. https://doi.org/10.1016/j.molstruc.2019.06.033
  • Shi, J., Ming, J., & Sun, W. (2018). Electrochemical performance of reinforcing steel in alkali-activated slag extract in the presence of chlorides. Corrosion Science, 133, 288–299. https://doi.org/10.1016/j.corsci.2018.01.043
  • Shi, J-j., & Sun, W. (2012). Electrochemical and analytical characterization of three corrosion inhibitors of steel in simulated concrete pore solutions. International Journal of Minerals, Metallurgy, and Materials, 19(1), 38–47. https://doi.org/10.1007/s12613-012-0512-7
  • Teymouri, F., Allahkaram, S. R., Shekarchi, M., Azamian, I., & Johari, M. (2021). A comprehensive study on the inhibition behaviour of four carboxylate-based corrosion inhibitors focusing on efficiency drop after the optimum concentration for carbon steel in the simulated concrete pore solution. Construction and Building Materials, 296, 123702. https://doi.org/10.1016/j.conbuildmat.2021.123702
  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8), 2999–3093. https://doi.org/10.1021/cr9904009
  • Umoren, S. A., AlAhmary, A. A., Gasem, Z. M., & Solomon, M. M. (2018). Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. International Journal of Biological Macromolecules, 117, 1017–1028. https://doi.org/10.1016/j.ijbiomac.2018.06.014
  • Umoren, S. A., Solomon, M. M., & Saji, V. S. (2022). Chapter 24 - Mechanism of corrosion inhibition by polymers. In S. A. Umoren, M. M. Solomon & V. S Saji (Eds.), Polymeric materials in corrosion inhibition (pp. 565–589). Elsevier. https://doi.org/10.1016/B978-0-12-823854-7.00005-9
  • Valek, L., Martinez, S., Mikulić, D., & Brnardić, I. (2008). The inhibition activity of ascorbic acid towards corrosion of steel in alkaline media containing chloride ions. Corrosion Science, 50(9), 2705–2709. https://doi.org/10.1016/j.corsci.2008.06.018
  • Volpi, E., Olietti, A., Stefanoni, M., & Trasatti, S. P. (2015). Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment. Journal of Electroanalytical Chemistry, 736, 38–46. https://doi.org/10.1016/j.jelechem.2014.10.023
  • Walczak, M. S., Morales-Gil, P., & Lindsay, R. (2019). Determining Gibbs energies of adsorption from corrosion inhibition efficiencies: Is it a reliable approach? Corrosion Science, 155, 182–185. https://doi.org/10.1016/j.corsci.2019.04.040
  • Wang, W., Chen, H., Li, X., & Zhu, Z. (2017). Corrosion behavior of steel bars immersed in simulated pore solutions of alkali-activated slag mortar. Construction and Building Materials, 143, 289–297. https://doi.org/10.1016/j.conbuildmat.2017.03.132
  • Wang, R., Ding, Y., Liu, R., Xiang, L., & Du, L. (2010). Pomegranate: Constituents, bioactivities and pharmacokinetics. Fruit Vegetable and Cereal Science and Biotechnology, 4(2), 77–87.
  • Wang, D., Ming, J., & Shi, J. (2020). Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole. Corrosion Science, 174, 108830. https://doi.org/10.1016/j.corsci.2020.108830
  • Wang, W., Song, Z., Guo, M., Jiang, L., Xiao, B., Jiang, Q., Chu, H., Liu, Y., Zhang, Y., & Xu, N. (2019). Employing ginger extract as an eco-friendly corrosion inhibitor in cementitious materials. Construction and Building Materials, 228, 116713. https://doi.org/10.1016/j.conbuildmat.2019.116713
  • Williamson, J., & Isgor, O. B. (2016). The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar. Corrosion Science, 106, 82–95. https://doi.org/10.1016/j.corsci.2016.01.027
  • Wu, M., Ma, H., & Shi, J. (2020). Enhanced corrosion resistance of reinforcing steels in simulated concrete pore solution with low molybdate to chloride ratios. Cement and Concrete Composites, 110, 103589. https://doi.org/10.1016/j.cemconcomp.2020.103589
  • Xu, J., Wei, J., Ma, G., & Tan, Q. (2020). Effect of MgAl-NO2 LDHs inhibitor on steel corrosion in chloride-free and contaminated simulated carbonated concrete pore solutions. Corrosion Science, 176, 108940. https://doi.org/10.1016/j.corsci.2020.108940
  • Xu, P., Zhou, J., Li, G., Wang, P., Wang, P., Li, F., Zhang, B., & Chi, H. (2021). Corrosion inhibition efficiency of compound nitrite with D-sodium gluconate on carbon steel in simulated concrete pore solution. Construction and Building Materials, 288, 123101. https://doi.org/10.1016/j.conbuildmat.2021.123101
  • Yadav, M., & Kumar, S. (2014). Experimental, thermodynamic and quantum chemical studies on adsorption and corrosion inhibition performance of synthesized pyridine derivatives on N80 steel in HCl solution. Surface and Interface Analysis, 46(4), 254–268. https://doi.org/10.1002/sia.5408
  • Yaro, A. S., Ibrahim, M. A., & Khadom, A. A. (2019). Sugarcane wastes as a green additive to control corrosion of steel-reinforced concrete under different treatment conditions. Journal of Bio- and Tribo-Corrosion, 5(4), 89. https://doi.org/10.1007/s40735-019-0281-1
  • Yuan, X., Wang, X., Cao, Y., & Yang, H. (2020). Natural passivation behavior and its influence on chloride-induced corrosion resistance of stainless steel in simulated concrete pore solution. Journal of Materials Research and Technology, 9(6), 12378–12390. https://doi.org/10.1016/j.jmrt.2020.08.056
  • Zeino, A., Abdulazeez, I., Khaled, M., Jawich, M. W., & Obot, I. B. (2018). Mechanistic study of polyaspartic acid (PASP) as eco-friendly corrosion inhibitor on mild steel in 3% NaCl aerated solution. Journal of Molecular Liquids, 250, 50–62. https://doi.org/10.1016/j.molliq.2017.11.160
  • Zhang, Z., Ba, H., & Wu, Z. (2019). Sustainable corrosion inhibitor for steel in simulated concrete pore solution by maize gluten meal extract: Electrochemical and adsorption behavior studies. Construction and Building Materials, 227, 117080. https://doi.org/10.1016/j.conbuildmat.2019.117080
  • Zhao, Y., Pan, T., Yu, X., & Chen, D. (2019). Corrosion inhibition efficiency of triethanolammonium dodecylbenzene sulfonate on Q235 carbon steel in simulated concrete pore solution. Corrosion Science, 158, 108097. https://doi.org/10.1016/j.corsci.2019.108097
  • Zheng, H., Dai, J.-G., Li, W., & Poon, C. S. (2018). Influence of chloride ion on depassivation of passive film on galvanized steel bars in concrete pore solution. Construction and Building Materials, 166, 572–580. https://doi.org/10.1016/j.conbuildmat.2018.01.174

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.