114
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Influence of aluminum waste on the thermo-mechanical properties of lightweight composite mortars based on sand and recycled high-density polyethylene

, , &
Pages 844-858 | Received 05 Jan 2023, Accepted 20 Jun 2023, Published online: 27 Jun 2023

References

  • Albano, C., Camacho, N., Hernández, M., Matheus, A., & Gutiérrez, A. (2009). Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Management (New York, N.Y.), 29(10), 2707–2716. https://doi.org/10.1016/j.wasman.2009.05.007
  • APRUE. (2019). Rapport de La Consommation Énergétique Finale de l’Algérie, Ministère de l’Energie et Des Mines-Agence Nationale Pour La Promotion et La Rationalisation de l’Utilisation de l’Energie.
  • Baali, L., Belagraa, L., Chikouche, M. A., & Zeghichi, L. (2021). Study of the effect of plastic waste fibers incorporation on the behavior of self compacting concrete. Annales de Chimie - Science des Matériaux, 45(5), 417–421. https://doi.org/10.18280/acsm.450508
  • Badache, A., Soufiane Benosman, A., Senhadji, Y., & Mouli, M. (2018). Thermo-physical and mechanical characteristics of sand-based lightweight composite mortars with recycled high-density polyethylene (HDPE). Construction and Building Materials, 163, 40–52. https://doi.org/10.1016/j.conbuildmat.2017.12.069
  • Benosman, A. S., Taïbi, H., Senhadji, Y., Mouli, M., Belbachir, M., & Bahlouli, M. I. (2017). Plastic waste particles in mortar composites: Sulfate resistance and thermal coefficients. Progress in Rubber, Plastics and Recycling Technology, 33(3), 171–202. https://doi.org/10.1177/147776061703300304
  • Bouglada, M. S., Ammar, N., & Larbi, B. (2021). Optimization of cellular concrete formulation with aluminum waste and mineral additions. Civil Engineering Journal, 7(7), 1222–1234. https://doi.org/10.28991/cej-2021-03091721
  • Choi, Y. W., Moon, D. J., Kim, Y. J., & Lachemi, M. (2009). Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Construction and Building Materials, 23(8), 2829–2835. https://doi.org/10.1016/j.conbuildmat.2009.02.036
  • Coppola, B., Courard, L., Michel, F., Incarnato, L., & Di Maio, L. (2016). Investigation on the use of foamed plastic waste as natural aggregates replacement in lightweight mortar. Composites Part B: Engineering, 99, 75–83. https://doi.org/10.1016/j.compositesb.2016.05.058
  • Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., & Incarnato, L. (2011). Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite Structures, 93(9), 2368–2374. https://doi.org/10.1016/j.compstruct.2011.03.025
  • Ghernouti, Y., Rabehi, B., Safi, B., & Chaid, R. (2009). Use of recycle plastic bag waste in the concrete. Journal of International Scientific Publications: Materials, Methods and Technologies, 8(June), 480–487.
  • Guendouz, M., & Debieb, F., Formulation et caractérisation d'un béton de sable à base de déchets plastiques. In Rencontres Universitaires de Génie Civil, May 2015, Bayonne, France. hal-01167754f.
  • Hama, S. M., & Hilal, N. N. (2019). Fresh Properties of Concrete Containing Plastic Aggregate. In Use of Recycled Plastics in Eco-Efficient Concrete. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102676-2.00005-0
  • Hannawi, K., Kamali-Bernard, S., & Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Management (New York, N.Y.), 30(11), 2312–2320. https://doi.org/10.1016/j.wasman.2010.03.028
  • Herki, B. A., Khatib, J. M., & Negim, E. M. (2013). Lightweight concrete made from waste polystyrene and fly ash. World Applied Sciences Journal, 21(9), 1356–1360. https://doi.org/10.5829/idosi.wasj.2013.21.9.20213
  • Holt, E., & Raivio, P. (2005). Use of gasification residues in aerated autoclaved concrete. Cement and Concrete Research, 35(4), 796–802. https://doi.org/10.1016/j.cemconres.2004.05.005
  • Khadraoui, M. A. (2019). Étude et Optimisation de La Façade Pour Un Confort Thermique et Une Efficacité Énergétique (Cas Des Bâtiments Tertiaires Dans Un Climat Chaud et Aride) (Thèse de Doctorat), UNIVERSITE MOHAMED KHIDER BISKRA.
  • Khadraoui, M. A., & Sriti, L. (2018). The impact of facade materials on the thermal comfort and energy efficiency of offices buildings. Journal of Building Materials and Structures, 5(1), 55–64. https://doi.org/10.34118/jbms.v5i1.44
  • Kou, S. C., Lee, G., Poon, C. S., & Lai, W. L. (2009). Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Management (New York, N.Y.), 29(2), 621–628. https://doi.org/10.1016/j.wasman.2008.06.014
  • Liu, Y., Leong, B. S., Hu, Z. T., & Yang, E. H. (2017). Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Construction and Building Materials, 148, 140–147. https://doi.org/10.1016/j.conbuildmat.2017.05.047
  • Liu, Y., Leong, B. S., & Yang, E. H. (2016). Aluminum dust recycled as aerating agent for the production of autoclaved aerated concrete [Paper presentation].Sustainable Construction Materials and Technologies 2016-August. https://doi.org/10.18552/2016/SCMT4S222
  • Majer, J., Vavřínová, N., Stejskalová, K., & Pentková, L. (2022). Software for the multi-criteria design of the external walls based on user priority. Buildings, 12(5), 647.
  • Marzouk, O. Y., Dheilly, R. M., & Queneudec, M. (2007). Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Management (New York, N.Y.), 27(2), 310–318. https://doi.org/10.1016/j.wasman.2006.03.012
  • Mohammed, A. A. (2017). Flexural behavior and analysis of reinforced concrete beams made of recycled PET waste concrete. Construction and Building Materials, 155, 593–604. https://doi.org/10.1016/j.conbuildmat.2017.08.096
  • Mounanga, P., Gbongbon, W., Poullain, P., & Turcry, P. (2008). Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cement and Concrete Composites, 30(9), 806–814. https://doi.org/10.1016/j.cemconcomp.2008.06.007
  • Oliver, K., & Selim, G. (2015). Prefab (and preserve): An investigation of retrofitting for belfast’s victorian terraced social housing. Journal of Building Survey, Appraisal & Valuation, 4(1), 63–77.
  • Paraschiv, S., Simona, L., & Serban, A. (2021). Increasing the energy efficiency of a building by thermal insulation to reduce the thermal load of the micro-combined cooling, heating and power system. Energy Reports, 7(May), 286–298. https://doi.org/10.1016/j.egyr.2021.07.122
  • Rahmani, E., Dehestani, M., Beygi, M. H., Allahyari, H., & Nikbin, I. M. (2013). On the Mechanical properties of concrete containing waste PET particles. Construction and Building Materials, 47, 1302–1308. https://doi.org/10.1016/j.conbuildmat.2013.06.041
  • Real, S., Gomes, M. G., Moret Rodrigues, A., & Bogas, J. A. (2016). Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings. Construction and Building Materials, 121, 460–470. https://doi.org/10.1016/j.conbuildmat.2016.06.018
  • Saikia, N., & De Brito, J. (2012). Use of plastic waste as aggregate in cement mortar and concrete preparation: A review. Construction and Building Materials, 34, 385–401. https://doi.org/10.1016/j.conbuildmat.2012.02.066
  • Saikia, N., & De Brito, J. (2013). Waste polyethylene terephthalate as an aggregate in concrete. Materials Research, 16(2), 341–350. https://doi.org/10.1590/S1516-14392013005000017
  • Senhadji, Y., Escadeillas, G., Benosman, A. S., Mouli, M., Khelafi, H., & Ould Kaci, S. (2015). Effect of incorporating PVC waste as aggregate on the physical, mechanical, and chloride ion penetration behavior of concrete. Journal of Adhesion Science and Technology, 29(7), 625–640. https://doi.org/10.1080/01694243.2014.1000773
  • Senthil Kumar, K., & Baskar, K. (2015). Recycling of E-plastic waste as a construction material in developing countries. Journal of Material Cycles and Waste Management, 17(4), 718–724. https://doi.org/10.1007/s10163-014-0303-5
  • Shubbar, S. D. A., & Al-Shadeedi, A. S. (2017). Utilization of waste plastic bottles as fine aggregate in concrete. عن كبديل المستهلكة المياه عبوات استخدام الخرسانة في الناعم الركام المدرس شبر احمد ضياء سوسن الشديدي الدين صالح عقيل المدني والمهندس الهندسة كلي.” Kufa Journal of Engineering 8 (2): 132–46.
  • Xu, Y., Jiang, L., Xu, J., & Li, Y. (2012). Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Construction and Building Materials, 27(1), 32–38. https://doi.org/10.1016/j.conbuildmat.2011.08.030
  • Yoon, J., Kim, H., Koh, T., & Pyo, S. (2020). Microstructural characteristics of sound absorbable porous cement-based materials by incorporating natural fibers and aluminum powder. Construction and Building Materials, 243, 118167. https://doi.org/10.1016/j.conbuildmat.2020.118167
  • Záleská, M., Pavlíková, M., Pokorný, J., Jankovský, O., Pavlík, Z., & Černý, R. (2018). Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Construction and Building Materials, 180, 1–11. https://doi.org/10.1016/j.conbuildmat.2018.05.250

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.