162
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effect of graphene oxide and functionalized carbon nanotubes on mechanical and durability properties of high volume fly-ash cement nanocomposite

&
Pages 859-875 | Received 08 Dec 2022, Accepted 20 Jun 2023, Published online: 09 Jul 2023

References

  • A. S. for Testing and M. C. C.-1 on Cement. (2013). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International.
  • Adamu, M., Trabanpruek, P., Jongvivatsakul, P., Likitlersuang, S., & Iwanami, M. (2021). Mechanical performance and optimization of high-volume fly ash concrete containing plastic wastes and graphene nanoplatelets using response surface methodology. Construction and Building Materials, 308, 125085. https://doi.org/10.1016/j.conbuildmat.2021.125085
  • Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., & Chen, J. (1999). Continuous production of aligned carbon nanotubes: A step closer to commercial realization. Chemical Physics Letters, 303(5–6), 467–474. https://doi.org/10.1016/S0009-2614(99)00282-1
  • ASTM, C. (2012). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concretes. ASTM International.
  • Barrett, T. J., la Varga, I., Schlitter, J., & Weiss, W. J. (2011). Reducing the risk of cracking in high volume fly ash concrete by using internal curing. World of Coal Ash Conference, Denver, CO.
  • Beams, R., Cançado, L. G., & Novotny, L. (2015). Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27(8), 83002.
  • Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161. https://doi.org/10.1016/j.jclepro.2012.10.049
  • Bi, L., Long, G., Ma, C., & Xie, Y. (2020). Mechanical properties and water absorption of steam-cured mortar containing phase change composites. Construction and Building Materials, 248, 118707. https://doi.org/10.1016/j.conbuildmat.2020.118707
  • Bucossi, A. R., Cress, C. D., Schauerman, C. M., Rossi, J. E., Puchades, I., & Landi, B. J. (2015). Enhanced electrical conductivity in extruded single-wall carbon nanotube wires from modified coagulation parameters and mechanical processing. ACS Applied Materials & Interfaces, 7(49), 27299–27305. https://doi.org/10.1021/acsami.5b08668
  • Celik, K., Meral, C., Mancio, M., Mehta, P. K., & Monteiro, P. J. M. (2014). A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building Materials, 67, 14–19. https://doi.org/10.1016/j.conbuildmat.2013.11.065
  • Choi, S. J., Lee, S. S., & Monteiro, P. J. M. (2012). Effect of fly ash fineness on temperature rise, setting, and strength development of mortar. Journal of Materials in Civil Engineering, 24(5), 499–505. https://doi.org/10.1061/(asce)mt.1943-5533.0000411
  • Cuong-Le, T., Nguyen, K. D., Hoang-Le, M., Sang-To, T., Phan-Vu, P., & Wahab, M. A. (2022). Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate. Phys. B Condens. Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726
  • Dadsetan, S., & Bai, J. (2017). Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash. Construction and Building Materials, 146, 658–667. https://doi.org/10.1016/j.conbuildmat.2017.04.158
  • Dash, P., Dash, T., Rout, T. K., Sahu, A. K., Biswal, S. K., & Mishra, B. K. (2016). RSC Advances Preparation of graphene oxide by dry planetary ball. RSC Advances, 6(15), 12657–12668. https://doi.org/10.1039/C5RA26491J
  • De La Varga, I., Castro, J., Bentz, D., & Weiss, J. (2012). Application of internal curing for mixtures containing high volumes of fly ash. Cement and Concrete Composites. 34(9), 1001–1008. https://doi.org/10.1016/j.cemconcomp.2012.06.008
  • De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: Present and future commercial applications. Science (New York, N.Y.), 339(6119), 535–539. https://doi.org/10.1126/science.1222453
  • Dillard, R. J., Murray, C. D., & Deschenes, R. (n.d.) Belitic calcium sulfoaluminate cement subjected to sulphate attack and sulfuric acid. Available SSRN 4022211.
  • Du, S., Shi, X., & Ge, Y. (2017). Electron probe microanalysis investigation into high-volume fly ash mortars. Journal of Materials in Civil Engineering, 29(7), 1–13. https://doi.org/10.1061/(asce)mt.1943-5533.0001854
  • Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. https://doi.org/10.1007/s10853-006-0637-z
  • Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., & Wirtz, L. (2007). Raman imaging of graphene. Solid State Communications, 143(1–2), 44–46. https://doi.org/10.1016/j.ssc.2007.01.050
  • Gupta, L. K., & Vyas, A. K. (2018). Impact on mechanical properties of cement sand mortar containing waste granite powder. Construction and Building Materials, 191, 155–164. https://doi.org/10.1016/j.conbuildmat.2018.09.203
  • Ho, V. D., Gholampour, A., Losic, D., & Ozbakkaloglu, T. (2021). Enhancing the performance and environmental impact of alkali-activated binder-based composites containing graphene oxide and industrial by-products. Construction and Building Materials, 284, 122811. https://doi.org/10.1016/j.conbuildmat.2021.122811
  • Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339. https://doi.org/10.1021/ja01539a017
  • Indukuri, C. S. R., Nerella, R., & Madduru, S. R. C. (2019). Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites. Construction and Building Materials, 229, 116863. https://doi.org/10.1016/j.conbuildmat.2019.116863
  • Jain, A., Chaudhary, S., & Gupta, R. (2022). Mechanical and microstructural characterization of fly ash blended self-compacting concrete containing granite waste. Construction and Building Materials, 314(PA), 125480. https://doi.org/10.1016/j.conbuildmat.2021.125480
  • Jindal, B. B., Singhal, D., & Sharma Parveen, S. (2018). Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture. Computers and Concrete, 21(3), 345–353. https://doi.org/10.12989/cac.2018.21.3.345
  • Kartini, K., Hamidah, M. S., Norhana, A. R., & Nur Hanani, A. R. (2014). Quarry dust fine powder as substitute for ordinary Portland cement in concrete mix. Journal of Engineering Science and Technology, 9(2), 191–205.
  • Kaur, R., & Kothiyal, N. C. (2019). Positive synergistic effect of superplasticizer stabilized graphene oxide and functionalized carbon nanotubes as a 3-D hybrid reinforcing phase on the mechanical properties and pore structure refinement of cement nanocomposites. Construction and Building Materials, 222, 358–370. https://doi.org/10.1016/j.conbuildmat.2019.06.152
  • Kaur, R., Kothiyal, N. C., & Arora, H. (2020). Studies on combined effect of superplasticizer modified graphene oxide and carbon nanotubes on the physico-mechanical strength and electrical resistivity of fly ash blended cement mortar. Journal of Building Engineering, 30, 101304. https://doi.org/10.1016/j.jobe.2020.101304
  • Le Thanh, C., Nguyen, T. N., Vu, T. H., Khatir, S., & Abdel Wahab, M. (2022). A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate. Engineering with Computers, 38(s1), 449–460. https://doi.org/10.1007/s00366-020-01154-0
  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (New York, N.Y.), 321(5887), 385–388. https://doi.org/10.1126/science.1157996
  • Li, H. D., Zhang, Q. M., Feng, G., Mei, L., Wang, Y., & Long, W. J. (2020). Multi-scale improved damping of high-volume fly ash cementitious composite: Combined effects of polyvinyl alcohol fibre and graphene oxide. Construction and Building Materials, 260, 119901. https://doi.org/10.1016/j.conbuildmat.2020.119901
  • Li, Z., Chen, W., Hao, H., & Khan, M. Z. N. (2021). Physical and mechanical properties of new lightweight ambient-cured EPS geopolymer composites. Journal of Materials in Civil Engineering, 33(6), 1–13. https://doi.org/10.1061/(asce)mt.1943-5533.0003705
  • Lim, C., Jung, E., Lee, S., Jang, C., Oh, C., & Shin, K. N. (2020). Global trend of cement production and utilization of circular resources. Journal of Energy Engineering, 29(3), 57–63. https://doi.org/10.5855/ENERGY.2020.29.3.057
  • Liu, S., Zhang, X., Yan, P., Cheng, R., Tang, Y., Cui, M., Wang, B., Zhang, L., Wang, X., Jiang, Y., Wang, L., & Yu, H. (2019). Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries. ACS Nano, 13(8), 8854–8864. https://doi.org/10.1021/acsnano.9b02129
  • Lu, Z., Hou, D., Ma, H., Fan, T., & Li, Z. (2016). Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste. Construction and Building Materials, 119, 107–112. https://doi.org/10.1016/j.conbuildmat.2016.05.060
  • Lu, Z., Hou, D., Meng, L., Sun, G., Lu, C., & Li, Z. (2015). Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Advances, 5(122), 100598–100605. https://doi.org/10.1039/C5RA18602A
  • Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., & Zhou, Q. (2013). Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials, 49, 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022
  • Malvar, L. J., & Lenke, L. R. (2006). Efficiency of fly ash in mitigating alkali-silica reaction based on chemical composition. ACI Materials Journal, 103(5), 319.
  • Manchala, S., Tandava, V., Jampaiah, D., Bhargava, S. K., & Shanker, V. (2019). Novel and highly efficient strategy for the green synthesis of soluble graphene by aqueous polyphenol extracts of eucalyptus bark and its applications in high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 7(13), 11612–11620. https://doi.org/10.1021/acssuschemeng.9b01506
  • Mathur, R. B. (2005). Synthesis of MWCNTs by catalytic chemical vapor deposition. 58th Annu. Sess. Indian Inst. Chem. Eng. CHEMCON.
  • Mohammed, A., Sanjayan, J. G., Duan, W. H., & Nazari, A. (2016). Graphene oxide impact on hardened cement expressed in enhanced freeze–thaw resistance. Journal of Materials in Civil Engineering, 28(9), 4016072. p. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001586
  • Reddy, A. N., Reddy, P. N., Kavyateja, B. V., & Reddy, G. G. K. (2020). Influence of nanomaterial on high-volume fly ash concrete: A statistical approach. Innovative Infrastructure Solutions, 5(3), 88. https://doi.org/10.1007/s41062-020-00340-9
  • Saini, P., Choudhary, V., Singh, B. P., Mathur, R. B., & Dhawan, S. K. (2009). Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Materials Chemistry and Physics, 113(2–3), 919–926. https://doi.org/10.1016/j.matchemphys.2008.08.065
  • Sezer, N., & Koç, M. (2019). Oxidative acid treatment of carbon nanotubes. Surfaces and Interfaces, 14(October 2018), 1–8. https://doi.org/10.1016/j.surfin.2018.11.001
  • Shaikh, F. U. A. (2016). Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277–287. https://doi.org/10.1016/j.ijsbe.2016.05.009
  • Sharma, S., Fulekar, M. H., Jayalakshmi, C. P., & Straub, C. P. (1989). Fly ash dynamics in soil‐water systems. C R C Critical Reviews in Environmental Control, 19(3), 251–275. https://doi.org/10.1080/10643388909388367
  • Sharma, S., Susan, D., Kothiyal, N. C., & Kaur, R. (2018). Graphene oxide prepared from mechanically milled graphite: Effect on strength of novel fly-ash based cementitious matrix. Construction and Building Materials, 177, 10–22. https://doi.org/10.1016/j.conbuildmat.2018.05.051
  • Standard, B. (1998). Testing concrete: Method for determination of water absorption. BSI 12.
  • Su, J.-K., Yang, C.-C., Wu, W.-B., & Huang, R. (2002). Effect of moisture content on concrete resistivity measurement. Journal of the Chinese Institute of Engineers, 25(1), 117–122. https://doi.org/10.1080/02533839.2002.9670686
  • Tahir, M. A., & Sabir, M. (2005). A study on durability of fly ash-cement mortars. In 30th Conference of Our World in Concrete and Structures, pp. 23–24.
  • Tong Yu, X., Chen, D., Rui Feng, J., Zhang, Y., & di Liao, Y. (2018). Behavior of mortar exposed to different exposure conditions of sulphate attack. Ocean Engineering, 157(March), 1–12. https://doi.org/10.1016/j.oceaneng.2018.03.017
  • Tran, V. T., Nguyen, T. K., Nguyen-Xuan, H., & Abdel Wahab, M. (2023). Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm. Thin-Walled Structures, 182(September 2022), 110267. https://doi.org/10.1016/j.tws.2022.110267
  • Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 4(1), 25–29. https://doi.org/10.1038/nnano.2008.329
  • Velandia, D. F., Lynsdale, C. J., Provis, J. L., Ramirez, F., & Gomez, A. C. (2016). Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes. Construction and Building Materials, 128, 248–255. https://doi.org/10.1016/j.conbuildmat.2016.10.076
  • Vukovic, G., Marinkovic, A., Obradovic, M., & Radmilovic, V. (2009). MC olic, R. Aleksic, PS Uskokovic, Synthesis, characterization and cytotoxicity of surface aminofunctionalized water-dispersible multi-walled carbon nanotubes. Applied Surface Science, 255, 8067.
  • Wei, Z., Wang, Y., Qi, M., Bi, J., Yang, S., & Yuan, X. (2021). The role of sucrose on enhancing properties of graphene oxide reinforced cement composites containing fly ash. Construction and Building Materials, 293, 123507. https://doi.org/10.1016/j.conbuildmat.2021.123507
  • Wenner, F. (1916). A method of measuring earth resistivity. no. 258. US Government Printing Office.
  • Yazici, H. (2007). The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Building and Environment, 42(5), 2083–2089. https://doi.org/10.1016/j.buildenv.2006.03.013
  • Yazıcı, H., Aydın, S., Yiğiter, H., & Baradan, B. (2005). Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cement and Concrete Research, 35(6), 1122–1127. https://doi.org/10.1016/j.cemconres.2004.08.011
  • Zandiatashbar, A., Lee, G.-H., An, S. J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C. R., Hone, J., & Koratkar, N. (2014). Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications, 5(1), 1–9. https://doi.org/10.1038/ncomms4186
  • Zivica, V., & Bajza, A. (2001). Acidic attack of cement based materials – A review. Part 1. Principle of acidic attack. Construction and Building Materials, 15(8), 331–340. https://doi.org/10.1016/S0950-0618(01)00012-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.