201
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

An experimental and analytical research on moment redistribution in reinforced concrete continuous beams

ORCID Icon, ORCID Icon & ORCID Icon
Pages 876-899 | Received 02 Feb 2023, Accepted 23 Jun 2023, Published online: 05 Jul 2023

References

  • Abdallah, M., Al Mahmoud, F., Khelil, A., Mercier, J., & Almassri, B. (2020). Assessment of the flexural behavior of continuous RC beams strengthened with NSM-FRP bars, experimental and analytical study. Composite Structures, 242, 112127. https://doi.org/10.1016/j.compstruct.2020.112127
  • Abdelaleem, T., Diab, H. M., & Rashwan, M. M. M. (2021). New aspects about the effect of critical regions reinforcement on the strength and moment redistribution of RC continuous T-beams (experimental and numerical study). Structures, 34, 4834–4850. https://doi.org/10.1016/j.istruc.2021.10.065
  • Abushanab, A., Alnahhal, W., & Farraj, M. (2021). Structural performance and moment redistribution of basalt FRC continuous beams reinforced with basalt FRP bars. Engineering Structures, 240, 112390. https://doi.org/10.1016/j.engstruct.2021.112390
  • ACI 318. (2019). Building code requirements for structural concrete. American Concrete Institute.
  • Akbarzadeh, H., & Maghsoudi, A. A. (2010). Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer. Materials & Design, 31(3), 1130–1147. https://doi.org/10.1016/j.matdes.2009.09.041
  • AS 3600-2018. (2018). Concrete structures. Australia Standards.
  • Aydogan, M. S., Alacali, S., & Arslan, G. (2023). Prediction of moment redistribution capacity in reinforced concrete beams using gene expression programming. Structures, 47, 2209–2219. https://doi.org/10.1016/j.istruc.2022.12.054
  • Bagge, N., O’Connor, A., Elfgren, L., & Pedersen, C. (2014). Moment redistribution in RC beams – A study of the influence of longitudinal and transverse reinforcement ratios and concrete strength. Engineering Structures, 80, 11–23. https://doi.org/10.1016/j.engstruct.2014.08.029
  • Bazan, J. L., & Fernandez-Davila, V. I. (2020). Evaluation of the experimental curvature ductility of RC beams externally strengthened with CFRP bands. Structures, 26, 1010–1020. https://doi.org/10.1016/j.istruc.2020.04.030
  • BS 8110-1. (1997). Structural use of concrete: Part 1: Code of practice for design and construction. British Standards Institution.
  • BS. EN 1992-1-1:2004. (2004). Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings. British Standards Institution.
  • Celep, Z. (2015). Nonlinear behavior and analysis in reinforced concrete structural systems. Istanbul Technical University, (Vol. 2).
  • Chitra, R., & Mohan, S. J. (2022). Reinforced concrete beam-column joint’s ductility behavior. Materials Today: Proceedings, 51, 1069–1073. https://doi.org/10.1016/j.matpr.2021.07.096
  • CSA A23.3. (2019). Design of concrete structures. Canadian Standards Association.
  • Diab, H. M. A., Abdelaleem, T., Khaled, A., & Rashwan, M. M. M. (2020). Experimental investigation of moment redistribution in RC continuous beams with T-Cross section considering central loaded support. International Journal of Civil Engineering and Technology, 11(7), 114–130. Retrieved from http://www.iaeme.com/IJCIET/index.asp114http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=11&IType=7JournalImpactFactor
  • DIN 1045-1. (2008). Concrete reinforced and prestressed concrete structures. German Institute of Standard.
  • do Carmo, R. N. F., & Lopes, S. M. R. (2005). Ductility and linear analysis with moment redistribution in reinforced high-strength concrete beams. Canadian Journal of Civil Engineering, 32(1), 194–203. https://doi.org/10.1139/l04-080
  • do Carmo, R. N. F., & Lopes, S. M. R. (2008). Available plastic rotation in continuous high-strength concrete beams. Canadian Journal of Civil Engineering, 35(10), 1152–1162. https://doi.org/10.1139/L08-064
  • Ehsani, R., Sharbatdar, M. K., & Kheyroddin, A. (2019). Ductility and moment redistribution capacity of two-span RC beams. Magazine of Civil Engineering, 90(6), 104–118. https://doi.org/10.18720/MCE.90.10
  • Ehsani, R., Sharbatdar, M. K., & Kheyroddin, A. (2022). Estimation of the moment redistribution and plastic hinge characteristics in two span beams cast with high-performance fiber reinforced cementinious composite (HPFRCC). Structures, 35, 1175–1190. https://doi.org/10.1016/j.istruc.2021.08.132
  • Gerami, M., Sharbati, Y., & Sivandi-Pour, A. (2013). Nonlinear seismic vulnerability evaluation of irregular steel buildings with cumulative damage indices. International Journal of Advanced Structural Engineering, 5(1), 1–15. https://doi.org/10.1186/2008-6695-5-9
  • Gilbert, R. I., & Sakka, Z. I. (2010). Strength and ductility of reinforced concrete slabs containing welded wire fabric and subjected to support settlement. Engineering Structures, 32(6), 1509–1521. https://doi.org/10.1016/j.engstruct.2010.01.025
  • Gusella, F. (2022). Effect of the plastic rotation randomness on the moment redistribution in reinforced concrete structures. Engineering Structures, 252, 113652. https://doi.org/10.1016/j.engstruct.2021.113652
  • Hadi, M. N. S., & Elbasha, N. (2007). Effects of tensile reinforcement ratio and compressive strength on the behaviour of over-reinforced helically confined HSC beams. Construction and Building Materials, 21(2), 269–276. https://doi.org/10.1016/j.conbuildmat.2005.08.020
  • Li, L., Li, B., Guo, N., & Zheng, W. (2022). Experimental and numerical investigations on moment redistribution in reinforced concrete frames subjected to vertical loads. Engineering Structures, 261, 114289. https://doi.org/10.1016/j.engstruct.2022.114289
  • Li, L., Zheng, W., & Wang, Y. (2018). Prediction of moment redistribution in statically indeterminate reinforced concrete structures using artificial neural network and support vector regression. Applied Sciences, 9(1), 28. https://doi.org/10.3390/app9010028
  • Li, L., Zheng, W., & Wang, Y. (2019). Review of moment redistribution in statically indeterminate RC members. Engineering Structures, 196, 109306. https://doi.org/10.1016/j.engstruct.2019.109306
  • Lin, C. H., & Chien, Y. M. (2000). Effect of section ductility on moment redistribution of continuous concrete beams. Journal of the Chinese Institute of Engineers, 23(2), 131–141. https://doi.org/10.1080/02533839.2000.9670531
  • Lou, T., Lopes, S. M. R., & Lopes, A. v. (2015). Redistribution of moments in reinforced high-strength concrete beams with and without confinement. Structural Engineering and Mechanics, 55(2), 379–398. https://doi.org/10.12989/sem.2015.55.2.379
  • Mahmood, S. M. F., Agarwal, A., Foster, S. J., & Valipour, H. (2018). Flexural performance of steel fibre reinforced concrete beams designed for moment redistribution. Engineering Structures, 177, 695–706. https://doi.org/10.1016/j.engstruct.2018.10.007
  • Mandor, A., & el Refai, A. (2022). Flexural response of reinforced concrete continuous beams strengthened with fiber-reinforced cementitious matrix (FRCM). Engineering Structures, 251, 113557. https://doi.org/10.1016/j.engstruct.2021.113557
  • Marefat, M., & Farzanian, M. (2008). Evaluation of moment redistribution demand in continuous constructions under gravity and seismic loads. In The 14 Th World Conference on Earthquake Engineering (pp. 1–8).
  • Oudah, F., & El-Hacha, R. (2012). A new ductility model of reinforced concrete beams strengthened using fiber reinforced polymer reinforcement. Composites Part B: Engineering, 43(8), 3338–3347. https://doi.org/10.1016/j.compositesb.2012.01.071
  • Pang, M., Shi, S., Hu, H., & Lou, T. (2021). Flexural behavior of two-span continuous CFRP RC beams. Materials, 14(22), 6746. https://doi.org/10.3390/ma14226746
  • Rahman, S. M. H., Mahmoud, K., & El-Salakawy, E. (2017). Moment redistribution in glass fiber reinforced polymer-reinforced concrete continuous beams subjected to unsymmetrical loading. Engineering Structures, 150, 562–572. https://doi.org/10.1016/j.engstruct.2017.07.066
  • Scholz, H. (1990). Ductility, redistribution, and hyperstatic moments in partially prestressed members. ACI Structural Journal, 87(1), 341–349.
  • Scott, R. H., & Whittle, R. T. (2005). Moment redistribution effects in beams. Magazine of Concrete Research, 57(1), 9–20. https://doi.org/10.1680/macr.2005.57.1.9
  • Shakir, A ., & D. M., Rogowsky. (2000). Evaluation of ductility and allowable moment redistribution in reinforced concrete structures. Canadian Journal of Civil Engineering, 27(6), 1286–1299. https://doi.org/10.1139/l00-059
  • Shin, S.-W., Ghosh, S. K., & Moreno, J. (1989). Flexural ductility of ultra-high-strength concrete members. ACI Structural Journal, 86(1), 394–400.
  • Tamrazyan, A. G., & Sayed, Y. A. K. (2022). A practical model for moment redistribution in statically indeterminate RC beams. European Journal of Environmental and Civil Engineering, 27(4), 1503–1511. https://doi.org/10.1080/19648189.2022.2086179
  • TEC 2018. (2018). Turkish earthquake code. Turkish Disaster and Emergency Management Presidency.
  • TS 500. (2000). Requirements for design and construction of reinforced concrete structures. Turkish Standards Institution.
  • Ugale, A. B., & Khante, S. N. (2020). Study of energy dissipation of reinforced concrete beam-column joint confined using varying types of lateral reinforcements. Materials Today: Proceedings, 27, 1356–1361. https://doi.org/10.1016/j.matpr.2020.02.690
  • Visintin, P., Mohamad Ali, M. S., Xie, T., & Sturm, A. B. (2018). Experimental investigation of moment redistribution in ultra-high performance fibre reinforced concrete beams. Construction and Building Materials, 166, 433–444. https://doi.org/10.1016/j.conbuildmat.2018.01.156
  • Yüksel, S., Jamal, R., & Foroughi, S. (2020). Effect of compression reinforcement ratio of beams on the moment curvature relationships. Konya Journal of Engineering Sciences, 8(1), 1–17. https://doi.org/10.36306/konjes.571642
  • Zhou, J., He, F., & Liu, T. (2014). Curvature ductility of columns and structural displacement ductility in RC frame structures subjected to ground motions. Soil Dynamics and Earthquake Engineering, 63, 174–183. https://doi.org/10.1016/j.soildyn.2014.03.009
  • Zhu, H., Li, C., Cheng, S., & Yuan, J. (2022). Flexural performance of concrete beams reinforced with continuous FRP bars and discrete steel fibers under cyclic loads. Polymers, 14(7), 1399. https://doi.org/10.3390/polym14071399

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.