228
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Dispersion, viscosity, unconfined compression and bender element testing of bentonite-waste glass mixtures

&
Pages 900-929 | Received 01 Nov 2022, Accepted 15 Jun 2023, Published online: 09 Jul 2023

References

  • Alpaydin, S. G., & Aksoy, Y. Y. (2022). Shear strength and compression behavior of colemanite-added sand-bentonite mixtures under high temperature and temperature cycles. Environmental Earth Sciences, 81(17), 1–16. https://doi.org/10.1007/s12665-022-10554-y
  • Amiri, S. T., Nazir, R., & Dehghanbanadaki, A. (2018). Experimental study of geotechnical characteristics of crushed glass mixed with kaolinite soil. Geomate Journal, 14(45), 170–176. https://doi.org/10.21660/2018.45.83839
  • Arroyo, M., Muir Wood, D., Greening, P. D., Medina, L., & Rio, J. (2006). Effects of sample size on bender-based axial G0 measurements. Géotechnique, 56(1), 39–52. https://doi.org/10.1680/geot.2006.56.1.39
  • Arulrajah, A., Ali, M. M. Y., Disfani, M. M., Piratheepan, J., & Bo, M. W. (2013a). Geotechnical performance of recycled glass-waste rock blends in footpath bases. Journal of Materials in Civil Engineering, 25(5), 653–661. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000617
  • Arulrajah, A., Piratheepan, J., Disfani, M. M., & Bo, M. W. (2013b). Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. Journal of Materials in Civil Engineering, 25(8), 1077–1088. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652
  • ASTM D 1557-12. (2021). Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International, West Conshohocken, PA, USA.https://doi.org/10.1520/D1557-12R21
  • ASTM D2166-06. (2010). Standard test method for unconfined compressive strength of cohesive soil. ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/D2166-06.
  • ASTM D2216-19. (2018). Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass.ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/D2216-19.
  • ASTM D4221-18. (2018). Standard test method for dispersive characteristics of clay soil by double hydrometer. ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/D4221-18
  • ASTM D6572-21. (2021). Standard test methods for determining dispersive characteristics of clayey soils by the crumb test. ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/D6572-21.
  • ASTM D7928-21e1. (2021). Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/D7928-21E01.
  • ASTM D8295-19. (2018). Standard test method for determination of shear wave velocity and initial shear modulus in soil specimens using bender elements. ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/D8295-19.
  • Atkinson, J. H. (2000). Non-linear soil stiffness in routine design. Géotechnique, 50(5), 487–508. https://doi.org/10.1680/geot.2000.50.5.487.
  • Bentz, D. P., Ferraris, C. F., Galler, M. A., Hansen, A. S., & Guynn, J. M. (2012). Influence of particle size distributions on yield stress and viscosity of cement–fly ash pastes. Cement and Concrete Research, 42(2), 404–409. https://doi.org/10.1016/j.cemconres.2011.11.006
  • Bilgen, G. (2020). Utilization of powdered glass in lime-stabilized clayey soil with sea water. Environmental Earth Sciences, 79(19), 1–12. https://doi.org/10.1007/s12665-020-09195-w
  • Brookfield, D. Viscometer operating instructions manual No M13-2100-A0415. Brookfield Engineering Laboratories, Inc.
  • Bui, M. T. (2009). Influence of some particle characteristics on the small strain response of granular materials [Doctoral dissertation]. University of Southampton.
  • Cabalar, A. F. (2010). Applications of the oedometer, triaxial and resonant column tests to the study of micaceous sands. Engineering Geology, 112(1–4), 21–28. https://doi.org/10.1016/j.enggeo.2010.01.004
  • Cabalar, A. F., & Demir, S. (2022). Geotechnical properties of a bentonite treated with waste glass grains. Arabian Journal of Geosciences, 15(9), 1–9. https://doi.org/10.1007/s12517-022-10169-4
  • Cabalar, A. F., Abdulnafaa, M. D., & Isbuga, V. (2021a). Plate loading tests on clay with construction and demolition materials. Arabian Journal for Science and Engineering, 46(5), 4307–4317. https://doi.org/10.1007/s13369-020-04916-6
  • Cabalar, A. F., Demir, S., & Khalaf, M. M. (2021b). Liquefaction resistance of different size/shape sand-clay mixtures using a pair of bender element–mounted molds. Journal of Testing and Evaluation, 49(1), 20180677. https://doi.org/10.1520/JTE20180677
  • Cabalar, A. F., Hama, S. O., & Demir, S. (2022). Behaviour of a clay and gravel mixture. The Baltic Journal of Road and Bridge Engineering, 17(1), 98–116. https://doi.org/10.7250/bjrbe.2022-17.553
  • Cabalar, A. F., Karabash, Z., & Mustafa, W. S. (2014). Stabilising a clay using tyre buffings and lime. Road Materials and Pavement Design, 15(4), 872–891. https://doi.org/10.1080/14680629.2014.939697
  • Cabalar, A. F., Khalaf, M. M., & Karabash, Z; University of Gaziantep, Civil Engineering Department, Turkey. (2018). Shear modulus of clay-sand mixtures using bender element test. Acta Geotechnica Slovenica, 15(1), 3–15. https://doi.org/10.18690/actageotechslov.15.1.3-15.2018
  • Clayton, C. R. I. (2011). Stiffness at small strain: Research and practice. Géotechnique, 61(1), 5–37. https://doi.org/10.1680/geot.2011.61.1.5
  • Consoli, N. C., da Silva Carretta, M., Festugato, L., Leon, H. B., Tomasi, L. F., & Heineck, K. S. (2021). Ground waste glass–carbide lime as a sustainable binder stabilising three different silica sands. Géotechnique, 71(6), 480–493. https://doi.org/10.1680/jgeot.18.P.099
  • Consoli, N. C., Winter, D., Leon, H. B., & Scheuermann Filho, H. C. (2018). Durability, strength, and stiffness of green stabilized sand. Journal of Geotechnical and Geoenvironmental Engineering, 144(9), 04018057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001928
  • Correia, N. D. S., Caldas, R. C. S., & Oluremi, J. R. (2020). Feasibility of using CDW fine fraction and bentonite mixtures as alternative landfill barrier material. Journal of Material Cycles and Waste Management, 22(6), 1877–1886. https://doi.org/10.1007/s10163-020-01075-6
  • Disfani, M. M., Arulrajah, A., Bo, M. W., & Hankour, R. J. W. M. (2011). Recycled crushed glass in road work applications. Waste Management, 31(11), 2341–2351. https://doi.org/10.1016/j.wasman.2011.07.003
  • Farooq, K., Ur Rehman, Z., Shahzadi, M., Mujtaba, H., & Khalid, U. (2023). Optimization of sand-bentonite mixture for the stable engineered barriers using desirability optimization methodology: A macro-micro-evaluation. KSCE Journal of Civil Engineering, 27(1), 40–52. https://doi.org/10.1007/s12205-022-2088-8
  • Gasparre, A., Nishimura, S., Minh, N. A., Coop, M. R., & Jardine, R. J. (2007). The stiffness of natural london clay. Géotechnique, 57(1), 33–47. https://doi.org/10.1680/geot.2007.57.1.33
  • Gu, X. Q., & Yang, J. (2013). A discrete element analysis of elastic properties of granular materials. Granular Matter, 15(2), 139–147. https://doi.org/10.1007/s10035-013-0390-3
  • Gupt, C. B., Bordoloi, S., Sahoo, R. K., & Sekharan, S. (2021). Mechanical performance and micro-structure of bentonite-fly ash and bentonite-sand mixes for landfill liner application. Journal of Cleaner Production, 292, 126033. https://doi.org/10.1016/j.jclepro.2021.126033
  • Hamza, M., Farooq, K., Rehman, Z. U., Mujtaba, H., & Khalid, U. (2023). Utilization of eggshell food waste to mitigate geotechnical vulnerabilities of fat clay: A micro–macro-investigation. Environmental Earth Sciences, 82(10), 247. https://doi.org/10.1007/s12665-023-10921-3
  • He, H., Payan, M., & Senetakis, K. (2021). The behaviour of a recycled road base aggregate and quartz sand with bender/extender element tests under variable stress states. European Journal of Environmental and Civil Engineering, 25(1), 152–169. https://doi.org/10.1080/19648189.2018.1521749
  • Hicher, P. Y. (1996). Elastic properties of soils. Journal of Geotechnical Engineering, 122(8), 641–648. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(641)
  • Ibrahim, H. H., Mawlood, Y. I., & Alshkane, Y. M. (2021). Using waste glass powder for stabilizing high-plasticity clay in Erbil city-Iraq. International Journal of Geotechnical Engineering, 15(4), 496–503. https://doi.org/10.1080/19386362.2019.1647644
  • Isfahani, H. S., & Azhari, A. (2021). Investigating the effect of basalt fiber additive on the performance of clay barriers for radioactive waste disposals. Bulletin of Engineering Geology and the Environment, 80(3), 2461–2472. https://doi.org/10.1007/s10064-020-02044-x
  • Johnson, K. L., & Johnson, K. L. (1987). Contact mechanics. Cambridge University Press.
  • Kazmi, D., Serati, M., Williams, D. J., Qasim, S., & Cheng, Y. P. (2021). The potential use of crushed waste glass as a sustainable alternative to natural and manufactured sand in geotechnical applications. Journal of Cleaner Production, 284, 124762. https://doi.org/10.1016/j.jclepro.2020.124762
  • Kazmi, D., Williams, D. J., & Serati, M. (2020). Waste glass in civil engineering applications—a review. International Journal of Applied Ceramic Technology, 17(2), 529–554. https://doi.org/10.1111/ijac.13434
  • Khalid, U., Rehman, Z. U., Liao, C., Farooq, K., & Mujtaba, H. (2019). Compressibility of compacted clays mixed with a wide range of bentonite for engineered barriers. Arabian Journal for Science and Engineering, 44(5), 5027–5042. https://doi.org/10.1007/s13369-018-03693-7
  • Kuwano, R., & Jardine, R. J. (2002). On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique, 52(10), 727–749. https://doi.org/10.1680/geot.2002.52.10.727
  • Lee, J. S., & Santamarina, J. C. (2005). Bender elements: Performance and signal interpretation. Journal of Geotechnical and Geoenvironmental Engineering, 131(9), 1063–1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  • Li, H., & Senetakis, K. (2020). Effects of particle grading and stress state on strain-nonlinearity of shear modulus and damping ratio of sand evaluated by resonant-column testing. Journal of Earthquake Engineering, 24(12), 1886–1912. https://doi.org/10.1080/13632469.2018.1487349
  • Liu, X., Zou, D., Liu, J., Zhou, C., & Zheng, B. (2020). Experimental study to evaluate the effect of particle size on the small strain shear modulus of coarse-grained soils. Measurement, 163, 107954. https://doi.org/10.1016/j.measurement.2020.107954
  • Lupini, J. F., Skinner, A. E., & Vaughan, P. R. (1981). The drained residual strength of cohesive soils. Géotechnique, 31(2), 181–213. https://doi.org/10.1680/geot.1981.31.2.181
  • Miftah, A., Garoushi, A. H. B., & Bilsel, H. (2020). Effects of fine content on undrained shear response of sand–clay mixture. International Journal of Geosynthetics and Ground Engineering, 6(2), 1–7. https://doi.org/10.1007/s40891-020-0193-7
  • Monkul, M. M., & Ozden, G. (2007). Compressional behavior of clayey sand and transition fines content. Engineering Geology, 89(3–4), 195–205. https://doi.org/10.1016/j.enggeo.2006.10.001
  • Monkul, M. M., Aydın, N. G., Demirhan, B., & Şahin, M. (2020). Undrained shear strength and monotonic behavior of different nonplastic silts: Sand-like or clay-like? Geotechnical Testing Journal, 43(3), 20180147. https://doi.org/10.1520/GTJ20180147
  • Mujtaba, H., Khalid, U., Farooq, K., Elahi, M., Rehman, Z. U., & Shahzad, H. M. (2020). Sustainable utilization of powdered glass to improve the mechanical behavior of fat clay. KSCE Journal of Civil Engineering, 24(12), 3628–3639. https://doi.org/10.1007/s12205-020-0159-2
  • Mukherjee, K., & Mishra, A. K. (2021). Impact of glass fibre on hydromechanical behaviour of compacted sand–bentonite mixture for landfill application. European Journal of Environmental and Civil Engineering, 25(7), 1179–1200. https://doi.org/10.1080/19648189.2019.1572541
  • Papo, A., Piani, L., & Ricceri, R. (2010). Rheological properties of very high-strength Portland cement pastes: Influence of very effective superplasticizers. International Journal of Chemical Engineering, 2010, 1–7. https://doi.org/10.1155/2010/682914
  • Payan, M., Khoshini, M., & Jamshidi Chenari, R. (2020). Elastic dynamic Young’s modulus and Poisson’s ratio of sand–silt mixtures. Journal of Materials in Civil Engineering, 32(1), 04019314. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002991
  • Prashant, A., Bhattacharya, D., & Gundlapalli, S. (2019). Stress-state dependency of small-strain shear modulus in silty sand and sandy silt of Ganga. Géotechnique, 69(1), 42–56. https://doi.org/10.1680/jgeot.17.P.100
  • Rahman, M. M., Lo, S. R., & Gnanendran, C. T. (2008). On equivalent granular void ratio and steady state behaviour of loose sand with fines. Canadian Geotechnical Journal, 45(10), 1439–1456. https://doi.org/10.1139/T08-064
  • Ren, Q., Tao, Y., Jiao, D., Jiang, Z., Ye, G., & De Schutter, G. (2021). Plastic viscosity of cement mortar with manufactured sand as influenced by geometric features and particle size. Cement and Concrete Composites, 122, 104163. https://doi.org/10.1016/j.cemconcomp.2021.104163
  • Ruan, B., Miao, Y., Cheng, K., & Yao, E. L. (2021). Study on the small strain shear modulus of saturated sand-fines mixtures by bender element test. European Journal of Environmental and Civil Engineering, 25(1), 28–38. https://doi.org/10.1080/19648189.2018.1513870
  • Saberian, M., Li, J., & Cameron, D. (2019). Effect of crushed glass on behavior of crushed recycled pavement materials together with crumb rubber for making a clean green base and subbase. Journal of Materials in Civil Engineering, 31(7), 04019108. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002765
  • Salamatpoor, S., & Salamatpoor, S. (2017). Evaluation of adding crushed glass to different combinations of cement-stabilized sand. International Journal of Geo-Engineering, 8(1), 1–12. https://doi.org/10.1186/s40703-017-0044-0
  • Salati, A., Share Isfahani, H., Roshanzamir, M. A., & Azhari, A. (2022). Investigating the effect of hematite additive on the performance of clay barriers for radioactive waste disposals. Bulletin of Engineering Geology and the Environment, 81(10), 1–15. https://doi.org/10.1007/s10064-022-02914-6
  • Santamarina, J. C., (2003). Soil behavior at the microscale: Particle forces. In: Proc. Symp. Soil Behavior and Soft Ground Construction, in honor of Charles C. Ladd - October 2003. MIT, pp. 25–56.
  • Shaikh, S. M., Nasser, M. S., Hussein, I. A., & Benamor, A. (2017). Investigation of the effect of polyelectrolyte structure and type on the electrokinetics and flocculation behavior of bentonite dispersions. Chemical Engineering Journal, 311, 265–276. https://doi.org/10.1016/j.cej.2016.11.098
  • Simoni, A., & Houlsby, G. T. (2006). The direct shear strength and dilatancy of sand–gravel mixtures. Geotechnical and Geological Engineering, 24(3), 523–549. https://doi.org/10.1007/s10706-004-5832-6
  • Tan, Y. Z., Xie, Z. Y., Peng, F., Qian, F. H., & Ming, H. J. (2021). Optimal mixing scheme for graphite–bentonite mixtures used as buffer materials in high-level waste repositories. Environmental Earth Sciences, 80(17), 1–13. https://doi.org/10.1007/s12665-021-09809-x
  • Thevanayagam, S. (1998). Effect of fines and confining stress on undrained shear strength of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
  • Thevanayagam, S., & Mohan, S. (2000). Intergranular state variables and stress–strain behaviour of silty sands. Géotechnique, 50(1), 1–23. https://doi.org/10.1680/geot.2000.50.1.1
  • Uyanık, O. (2019). Estimation of the porosity of clay soils using seismic P-and S-wave velocities. Journal of Applied Geophysics, 170, 103832. https://doi.org/10.1016/j.jappgeo.2019.103832
  • Vallejo, L. E., & Mawby, R. (2000). Porosity influence on the shear strength of granular material–clay mixtures. Engineering Geology, 58(2), 125–136. https://doi.org/10.1016/S0013-7952(00)00051-X
  • Viggiani, G., & Atkinson, J. H. (1995). Interpretation of bender element tests. Géotechnique, 45(1), 149–154. https://doi.org/10.1680/geot.1995.45.1.149
  • Villar, M. V. (2021). Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata. A study applied to the use of bentonite as sealing material in high level radioactive waste repositories. Technical Publication 01/2002. Madrid: Enresa.
  • Wang, D. W., Zhu, C., Tang, C. S., Li, S. J., Cheng, Q., Pan, X. H., & Shi, B. (2021). Effect of sand grain size and boundary condition on the swelling behavior of bentonite–sand mixtures. Acta Geotechnica, 16(9), 2759–2773. https://doi.org/10.1007/s11440-021-01194-w
  • Wang, Y. H., Lo, K. F., Yan, W. M., & Dong, X. B. (2007). Measurement biases in the bender element test. Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 564–574. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(564)
  • Watabe, Y., Sassa, S., Kaneko, T., & Nakata, Y. (2017). Mechanical characteristics of undisturbed coral gravel soils: The intergranular void ratio as a common governing parameter. Soils and Foundations, 57(5), 760–775. https://doi.org/10.1016/j.sandf.2017.08.007
  • Yao, K., Chen, Q., Xiao, H., Liu, Y., & Lee, F. H. (2020). Small-strain shear modulus of cement-treated marine clay. Journal of Materials in Civil Engineering, 32(6), 04020114. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003153
  • Yong, R. N., Boonsinsuk, P., & Wong, G. (1986). Formulation of backfill material for a nuclear fuel waste disposal vault. Canadian Geotechnical Journal, 23(2), 216–228. https://doi.org/10.1139/t86-031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.