208
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A DEM-based approach for modeling the thermal-mechanical behavior of frozen soil

, , , , &
Pages 930-955 | Received 17 Nov 2022, Accepted 19 Apr 2023, Published online: 13 Jul 2023

References

  • An, L. S., Ling, X. Z., Geng, Y. C., Li, Q. L., & Zhang, F. (2018). DEM investigation of particle-scale mechanical properties of frozen soil based on the nonlinear microcontact model incorporating rolling resistance. Mathematical Problems in Engineering, 2018, 1–13. https://doi.org/10.1155/2018/2685709
  • Andersen, G. R., Swan, C. W., Ladd, C. C., & Germaine, J. T. (1995). Small-strain behavior of frozen sand in triaxial compression. Canadian Geotechnical Journal, 32(3), 428–451. https://doi.org/10.1139/t95-047
  • Barreto, D., O'Sullivan, C., & Zdravkovic L. (2009). Quantifying the evolution of soil fabric under different stress paths [Paper presentation]. Powders and Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media: AIP Publishing, 181–184. https://doi.org/10.1063/1.3179881
  • Boyle, R. W., & Sproule, D. O. (1931). Velocity of longitudinal vibration in solid rods (ultrasonic method) with special reference to the elasticity of ice. Canadian Journal of Research, 5(6), 601–618. https://doi.org/10.1139/cjr31-098
  • Bragg, R. A., & Andersland, O. B. (1981). Strain rate, temperature, and sample size effects on compression and tensile properties of frozen soil. Engineering Geology, 18(1–4), 35–46. https://doi.org/10.1016/0013-7952(81)90044-2
  • Butkovich, T. R. (1957). Linear thermal expansion of ice. U.S. Snow, Ice and Permafrost Research Establishment. Research Report 40. Google Scholar.
  • Butkovich, T. R. (1959). On the mechanical properties of sea ice, Thule, Greenland, 1957. Wilmette, Illinois
  • Chamberlain, E., Groves, C., & Perham, R. (1972). The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions. Géotechnique, 22(3), 469–483. https://doi.org/10.1680/geot.1972.22.3.469
  • Chen, S. J., Ma, W., Li, G. Y., Liu, E. L., & Zhang, G. (2017). Development and application of triaxial apparatus of frozen soil used in conjunction with medical CT. Rock and Soil Mechanics, 38(s2), 359–367. In Chinese.
  • Chen, S. J., Ma, W., & Li, G. Y. (2022). A novel approach for characterizing frozen soil damage based on mesostructure. International Journal of Damage Mechanics, 31(3), 444–463. https://doi.org/10.1177/10567895211045422
  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
  • Dempsey, J. P., & Wei, Y. C. (1989). Fracture toughness KQ and fractography of S1 type freshwater ice. In: ICF7. Houston (USA); 3421–3428.
  • Farid, H., Saeidi, A., & Farzaneh, M. (2017). Prediction of failure in atmospheric ice under triaxial compressive stress. Cold Regions Science and Technology, 138, 46–56. https://doi.org/10.1016/j.coldregions.2017.03.005
  • Gagnon, R. E., & Gammon, P. H. (1995). Triaxial experiments on iceberg and glacier ice. Journal of Glaciology, 41(139), 528–540. https://doi.org/10.1017/S0022143000034869
  • Golding, N., Schulson, E. M., & Renshaw, C. E. (2012). Shear localization in ice: Mechanical response and microstructural evolution of P-faulting. Acta Materialia, 60(8), 3616–3631. https://doi.org/10.1016/j.actamat.2012.02.051
  • Gold, L. W. (1958). Some observations on the dependence of strain on stress for ice. Canadian Journal of Physics, 36(10), 1265–1275. https://doi.org/10.1139/p58-131
  • Han, H. W., Xie, F., Wang, E. L., & Zhang, D. (2018). Experimental study on properties of compressive strength and failure criteria of river ice under triaxial compression. Journal of Hydraulic Engineering, 49(10), 1199–1206. In Chinese.
  • Hawkes, I., & Mellor, M. (1972). Deformation and fracture of ice under uniaxial stress. Journal of Glaciology, 11(61), 103–131. https://doi.org/10.3189/S002214300002253X
  • Haynes, F. D. (1978). Effect of temperature on the strength of snow-ice. Department of the Army, Cold Regions Research and Engineering Laboratory, Corps of Engineers, CRREL Report 78–27.
  • Hohmann-Porebska, M. (2002). Microfabric effects in frozen clays in relation to geotechnical parameters. Applied Clay Science, 21(1–2), 77–87. https://doi.org/10.1016/S0169-1317(01)00094-1
  • Ince, S. T., Kumar, A., & Paik, J. K. (2017). A new constitutive equation on ice materials. Ships and Offshore Structures, 12(5), 610–623. https://doi.org/10.1080/17445302.2016.1190122
  • Itasca. (2019). Particle flow code in three dimension (PFC3D), user’s manual, version 6.0. Itasca Consulting Group.
  • Jiang, M. J., Sun, R. H., Arroyo, M., & Du, W. H. (2021). Salinity effects on the mechanical behaviour of methane hydrate bearing sediments: A DEM investigation. Computers and Geotechnics, 133, 104067. https://doi.org/10.1016/j.compgeo.2021.104067
  • Jones, S. J. (2007). A review of the strength of iceberg and other freshwater ice and the effect of temperature. Cold Regions Science and Technology, 47(3), 256–262. https://doi.org/10.1016/j.coldregions.2006.10.002
  • Kellner, L., Stender, M., Polach, V. B. U., Franz, R. U., Herrnring, H., Ehlers, S., Hoffmann, N., & Høyland, K. V. (2019). Establishing a common database of ice experiments and using machine learning to understand and predict ice behavior. Cold Regions Science and Technology, 162, 56–73. https://doi.org/10.1016/j.coldregions.2019.02.007
  • Lai, Y. M., Yang, Y. G., Chang, X. X., & Li, S. Y. (2010). Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics. International Journal of Plasticity, 26(10), 1461–1484.
  • Lainey, L., & Tinawi, R. (1984). The mechanical properties of sea ice—A compilation of available data. Canadian Journal of Civil Engineering, 11(4), 884–923. https://doi.org/10.1139/l84-106
  • Li, H., Zhu, Y., Zhang, J., & Lin, C. (2004). Effects of temperature, strain rate and dry density on compressive strength of saturated frozen clay. Cold Regions Science and Technology, 39(1), 39–45. https://doi.org/10.1016/j.coldregions.2004.01.001
  • Li, T., Jiang, M., & Thornton, C. (2018). Three-dimensional discrete element analysis of triaxial tests and wetting tests on unsaturated compacted silt. Computers and Geotechnics, 97, 90–102. https://doi.org/10.1016/j.compgeo.2017.12.011
  • Liu, E. L., & Lai, Y. M. (2020). Thermo-poromechanics-based viscoplastic damage constitutive model for saturated frozen soil. International Journal of Plasticity, 128, 102683. https://doi.org/10.1016/j.ijplas.2020.102683
  • Liu, Z. Y. (2018). Mechanical characteristics and microstructure mechanism of unsaturated soil subjected to freezing condition [Doctoral dissertation]. Beijing Jiaotong University. In Chinese
  • Ma, W., & Chang, X. (2002). Analyses of strength and deformation of an artificially frozen soil wall in underground engineering. Cold Regions Science and Technology, 34(1), 11–17. https://doi.org/10.1016/S0165-232X(01)00042-8
  • Ma, L., Qi, J. L., Yu, F., & Yao, X. L. (2016). Experimental study on variability in mechanical properties of a frozen sand as determined in triaxial compression tests. Acta Geotechnica, 11(1), 61–70. https://doi.org/10.1007/s11440-015-0391-y
  • Ma, W., & Wang, D. (2012). Studies on frozen soil mechanics in China in past 50 years and their prospect. Chinese Journal of Geotechnical Engineering, 34(4), 625–640. In Chinese.
  • Mcdowell, G. R., & Harireche, O. (2002). Discrete element modelling of yielding and normal compression of sand. Géotechnique, 52(4), 299–304. https://doi.org/10.1680/geot.2002.52.4.299
  • Mellor, M., & Cole, D. M. (1982). Deformation and failure of ice under constant stress or constant strain-rate. Cold Regions Science and Technology, 5(3), 201–219. https://doi.org/10.1016/0165-232X(82)90015-5
  • Niu, Y. Q., Wang, X., Liao, M. K., & Chang, D. (2022). Strength criterion for frozen silty clay considering the effect of initial water content. Cold Regions Science and Technology, 196, 103521. https://doi.org/10.1016/j.coldregions.2022.103521
  • Northwood, T. D. (1947). Sonic determination of the elastic properties of ice. Canadian Journal of Research, 25(2), 88–95. https://doi.org/10.1139/cjr47a-011
  • Petrovic, J. J. (2003). Review mechanical properties of ice and snow. Journal of Materials Science, 38(1), 1–6. https://doi.org/10.1023/A:1021134128038
  • Potyondy, D., & Cundall, P. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  • Qiu, W. L., & Peng, R. X. (2021). Research on the numerical simulation for plastic model of ice as building materials under triaxial compression. Construction and Building Materials, 268, 121183. https://doi.org/10.1016/j.conbuildmat.2020.121183
  • Rist, M., & Murrell, S. (1994). Ice triaxial deformation and fracture. Journal of Glaciology, 40(135), 305–318. https://doi.org/10.1017/S0022143000007395
  • Satake, M. (1982). Fabric tensor in granular materials [Paper presentation]. Proceedings of the IUTAM Symposium on Deformation and Failure of Granular Materials, Delft, Balkema, 63–68.
  • Schulson, E. M. (2001). Ice: Mechanical properties. Encyclopedia of Materials: Science and Technology (Second Edition), 4006–4018.
  • Shan, R. L., Bai, Y., Huang, P. C., Song, Y. W., & Guo, X. (2017). Experimental research on failure criteria of freshwater ice under triaxial compressive stress. Chinese Journal of Theoretical and Applied Mechanics, 49(02), 467–477. In Chinese.
  • Shan, R. L., Bai, Y., Sui, S. M., Yang, H., & Duan, J. M. (2018). Experimental research on mechanical characteristics of freshwater ice under triaxial compression. Journal of Basic Science and Engineering, 6(4), 901–917. In Chinese.
  • Sun, K., Tang, L., Zhou, A., & Ling, X. (2020). An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces. Computers and Geotechnics, 128, 103842. https://doi.org/10.1016/j.compgeo.2020.103842
  • Sun, K., & Zhou, A. N. (2021). A multisurface elastoplastic model for frozen soil. Acta Geotechnica, 16(11), 3401–3424. https://doi.org/10.1007/s11440-021-01391-7
  • Sun, X. L., Wang, R., & Hu, M. J. (2005). A CT–timely experimental study on mesoscopic structural damage development of frozen soil under triaxial shearing. Rock and Soil Mechanics, 26(8), 1298–1302. In Chinese
  • Thornton, C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1), 43–53. https://doi.org/10.1680/geot.2000.50.1.43
  • Ting, J. M., Martin, R. T., & Ladd, C. (1983). Mechanisms of strength for frozen sand. Journal of Geotechnical Engineering, 109(10), 1286–1302. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1286)
  • Tsytovich, N. A., & Sumgin, M. I. (1937). Principles of mechanics of frozen ground. US: SIPRE Translation, 19, 106–107.
  • Vaudrey, K. (1977). Ice engineering—Study of related properties of floating sea ice sheets and summary of elastic and viscoelastic analyses (Report TR860). U.S. Naval Civil Engineering Laboratory, Port Hueneme, CA.
  • Wang, G. D., & Clavetti, F. (2021). 3D DEM investigation of the resistance of ice and frozen granular soils. European Journal of Environmental and Civil Engineering, 997, 1–21.
  • Wang, J. C., & Zhang, X. Z. (1996). Application of scanning electronic microscope in study of geocryology. Journal of Glaciology and Geocryolocy, 18(2), 184–188. In Chinese.
  • Wang, P., Liu, E. L., & Zhi, B. (2021). An elastic-plastic model for frozen soil from micro to macro scale. Applied Mathematical Modelling, 91, 125–148. https://doi.org/10.1016/j.apm.2020.09.039
  • Weibull, W. (1939). A statistical theory of strength of materials, IVA Handlingar No.151. Proceeding of the Royal Sweden Academy of Engineering Sciences, 1–45.
  • Wu, Z. W., Ma, W., Pu, Y. B., & Chang, X. X. (1997). Submicroscopic analysis on deformation characteristics in creep process of frozen soil. Chinese Journal of Geotechnical Engineering, 19(3), 4–9. In Chinese.
  • Xu, G., Wu, W., & Qi, J. (2016). An extended hypoplastic constitutive model for frozen sand. Soils and Foundations, 56(4), 704–711. https://doi.org/10.1016/j.sandf.2016.07.010
  • Xu, H. Y., Lai, Y. M., Yu, W. B., Xu, X. T., & Chang, X. X. (2011). Experimental research on triaxial strength of polycrystalline ice. Journal of Glaciology and Geocryology, 33(05), 1120–1126. In Chinese.
  • Xu, X. Z., Wang, J. C., & Zhang, L. X. (2001). Permafrost physics. Science Press. In Chinese.
  • Xu, X., Yuan, J., & Bai, R. (2014). Laboratory Investigation on mechanical behavior of artificial ice under triaxial compression. Advanced Materials Research, 887–888, 903–906. https://doi.org/10.4028/www.scientific.net/AMR.887-888.903
  • Xu, X. T., Li, Q. L., & Xu, G. F. (2020). Investigation on the behavior of frozen silty clay subjected to monotonic and cyclic triaxial loading. Acta Geotechnica, 15(5), 1289–1302. https://doi.org/10.1007/s11440-019-00826-6
  • Yamamoto, Y., & Springman, S. M. (2014). Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 C. Canadian Geotechnical Journal, 51(10), 1178–1195. https://doi.org/10.1139/cgj-2013-0257
  • Yang, Y., Gao, F., Lai, Y., & Cheng, H. (2016). Experimental and theoretical investigations on the mechanical behavior of frozen silt. Cold Regions Science and Technology 130, 59–65.
  • Yin, N., Li, S. Y., Pei, W. S., Zhang, M. Y., & Dong, Y. (2016). Microscopic deformation mechanisms of triaxial test of frozen clay analyzed by discrete element method. Journal of Glaciology and Geocryology, 38(01), 178–185. In Chinese.
  • Zhang, D., & Liu, E. (2019). Binary-medium-based constitutive model of frozen soils subjected to triaxial loading. Research Physics, 12, 1999–2008.
  • Zhang, C., & Lu, N. (2021). Soil sorptive potential-based paradigm for soil freezing curves. Journal of Geotechnical and Geoenvironmental Engineering, 147(9), 04021086. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002597
  • Zhang, F. L., Zhu, Z. W., Fu, T. T., & Jia, J. X. (2020). Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading. Mechanics of Materials, 140, 103217. https://doi.org/10.1016/j.mechmat.2019.103217
  • Zhou, B., Huang, R., Wang, H., & Wang, J. (2013). DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granular Matter, 15(3), 315–326. https://doi.org/10.1007/s10035-013-0409-9
  • Zhou, F. X., & Lai, Y. M. (2010). Simulation of mechanical behaviour for frozen sand clay by discrete element method. Rock and Soil Mechanics, 31(12), 4016–4020. In Chinese.
  • Zhou, Z. W., Ma, W., Zhang, S. J., Mu, Y. H., & Li, G. Y. (2020). Experimental investigation of the path-dependent strength and deformation behaviours of frozen loess. Engineering Geology, 265, 105449. https://doi.org/10.1016/j.enggeo.2019.105449
  • Zhu, T. T., Chen, J. X., Huang, D., Luo, Y. B., Li, Y., & Xu, L. F. (2021). A DEM-based approach for modeling the damage of rock under freeze-thaw cycles. Rock Mechanics and Rock Engineering, 54, 2843–2858. https://doi.org/10.1007/s00603-021-02465-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.