123
Views
0
CrossRef citations to date
0
Altmetric
Notes

Intelligent modelling of unconfined compressive strength of cement stabilised iron ore tailings: a case study of Golgohar mine

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1759-1787 | Received 23 May 2023, Accepted 18 Oct 2023, Published online: 06 Nov 2023

References

  • Abu-Farsakh, M. Y., & Titi, H. H. (2004). Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles. Journal of Geotechnical and Geoenvironmental Engineering, 130(9), 935–944. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(935)
  • Alade, I. O., Abd Rahman, M. A., & Saleh, T. A. (2019a). Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression modelregression model. Nano-Structures & Nano-Objects, 17, 103–111. https://doi.org/10.1016/j.nanoso.2018.12.001
  • Alade, I. O., Abd Rahman, M. A., & Saleh, T. A. (2019b). Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm. Solar Energy, 183, 74–82. https://doi.org/10.1016/j.solener.2019.02.060
  • Alavi, A. H., & Gandomi, A. H. (2011). A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations, 28(3), 242–274.
  • Alavi, A. H., Gandomi, A. H., Nejad, H. C., Mollahasani, A., & Rashed, A. (2013). Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems. Neural Computing and Applications, 23(6), 1771–1786. https://doi.org/10.1007/s00521-012-1144-6
  • Al-Bared, M. A. M., Mustaffa, Z., Armaghani, D. J., Marto, A., Yunus, N. Z. M., & Hasanipanah, M. (2021). Application of hybrid intelligent systems in predicting the unconfined compressive strength of clay material mixed with recycled additive. Transportation Geotechnics, 30, 100627. https://doi.org/10.1016/j.trgeo.2021.100627
  • Alidoust, P., Goodarzi, S., Tavana Amlashi, A., & Sadowski, Ł. (2023). Comparative analysis of soft computing techniques in predicting the compressive and tensile strength of seashell containing concrete. European Journal of Environmental and Civil Engineering, 27(5), 1853–1875. https://doi.org/10.1080/19648189.2022.2102081
  • Anagnostopoulos, C. A. (2015). Strength properties of an epoxy resin and cement-stabilized silty clay soil. Applied Clay Science, 114, 517–529. https://doi.org/10.1016/j.clay.2015.07.007
  • Asgari, M. R., Baghebanzadeh Dezfuli, A., & Bayat, M. (2015). Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arabian Journal of Geosciences, 8(3), 1439–1452. https://doi.org/10.1007/s12517-013-1173-1
  • Ashrafian, A., Gandomi, A. H., Rezaie-Balf, M., & Emadi, M. (2020). An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement. Measurement, 152, 107309. https://doi.org/10.1016/j.measurement.2019.107309
  • ASTM C1580. (2020). Standard test method for water-soluble sulfate in soil. ASTM International.
  • ASTM D698. (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International.
  • ASTM D854. (2014). No standard test methods for specific gravity of soil solids by water pycnometer. ASTM International.
  • ASTM D1557. (2012). Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International.
  • ASTM D1883. (2016). Standard test method for California Bearing Ratio (CBR) of laboratory-compacted soils. ASTM International.
  • ASTM D2166. (2016). Standard test method for unconfined compressive strength of cohesive soil. ASTM International.
  • ASTM D2487. (2017). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International.
  • ASTM D3282. (2015). Standard practice for classification of soils and soil-aggregate mixtures for highway construction purposes. ASTM International.
  • ASTM D4318. (2017). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International.
  • ASTM D4972. (2019). Standard test methods for pH of Soils. ASTM International.
  • Barati, S., Tabatabaie Shourijeh, P., Samani, N., & Asadi, S. (2020). Stabilization of iron ore tailings with cement and bentonite: A case study on Golgohar mine. Bulletin of Engineering Geology and the Environment, 79(8), 4151–4166. https://doi.org/10.1007/s10064-020-01843-6
  • Bastos, L. A. D. C., Silva, G. C., Mendes, J. C., & Peixoto, R. A. F. (2016). Using iron ore tailings from tailing dams as road material. Journal of Materials in Civil Engineering, 28(10), 4016102. https://doi.org/10.1061/(asce)mt.1943-5533.0001613
  • Bayat, M., Asgari, M. R., & Mousivand, M. (2013). Effects of cement and lime treatment on geotechnical properties of a low plasticity clay [Paper presentation]. International Conference on Civil Engineering Architecture & Urban Sustainable Development, 27–28 November.
  • Bekhiti, M., Trouzine, H., & Rabehi, M. (2019). Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil. Construction and Building Materials, 208, 304–313. https://doi.org/10.1016/j.conbuildmat.2019.03.011
  • Blight, G. E. (2009). Geotechnical engineering for mine waste storage facilities. CRC Press. https://doi.org/10.1201/9780203859407
  • Boutouil, M., & Levacher, D. (2005). Effect of high initial water content on cement-based sludge solidification. Proceedings of the Institution of Civil Engineers - Ground Improvement, 9(4), 169–174. https://doi.org/10.1680/grim.2005.9.4.169
  • Çanakcı, H., Baykasoğlu, A., & Güllü, H. (2009). Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Computing and Applications, 18(8), 1031–1041. https://doi.org/10.1007/s00521-008-0208-0
  • Castro-Gomes, J. P., Silva, A. P., Cano, R. P., Suarez, J. D., & Albuquerque, A. (2012). Potential for reuse of tungsten mining waste-rock in technical-artistic value added products. Journal of Cleaner Production, 25, 34–41. https://doi.org/10.1016/j.jclepro.2011.11.064
  • Chen, X.-Y., & Chau, K.-W. (2019). Uncertainty analysis on hybrid double feedforward neural network model for sediment load estimation with LUBE method. Water Resources Management, 33(10), 3563–3577. https://doi.org/10.1007/s11269-019-02318-4
  • Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres. Procedia Engineering, 143, 658–665. https://doi.org/10.1016/j.proeng.2016.06.093
  • Das, S. K., & Basudhar, P. K. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics, 33(8), 454–459. https://doi.org/10.1016/j.compgeo.2006.08.006
  • Das, S. K., Samui, P., & Sabat, A. K. (2011). Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil. Geotechnical and Geological Engineering, 29(3), 329–342. https://doi.org/10.1007/s10706-010-9379-4
  • Emamgholizadeh, S., Bahman, K., Bateni, S. M., Ghorbani, H., Marofpoor, I., & Nielson, J. R. (2017). Estimation of soil dispersivity using soft computing approaches. Neural Computing and Applications, 28(S1), 207–216. https://doi.org/10.1007/s00521-016-2320-x
  • Emamgolizadeh, S., Bateni, S. M., Shahsavani, D., Ashrafi, T., & Ghorbani, H. (2015). Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS). Journal of Hydrology, 529, 1590–1600. https://doi.org/10.1016/j.jhydrol.2015.08.025
  • Etim, R. K., Attah, I. C., Eberemu, A. O., & Yohanna, P. (2019). Compaction behaviour of periwinkle shell ash treated lateritic soil for use as road sub-base construction material. Journal of GeoEngineering, 14(3), 179–190.
  • Ferreira, C. (2001). Gene expression programming: A new adaptive algorithm for solving problems. ArXiv Preprint Cs/0102027.
  • Furlan, A. P., Razakamanantsoa, A., Ranaivomanana, H., Levacher, D., & Katsumi, T. (2018). Shear strength performance of marine sediments stabilized using cement, lime and fly ash. Construction and Building Materials, 184, 454–463. https://doi.org/10.1016/j.conbuildmat.2018.06.231
  • Gandomi, A. H., & Roke, D. A. (2015). Assessment of artificial neural network and genetic programming as predictive tools. Advances in Engineering Software, 88, 63–72. https://doi.org/10.1016/j.advengsoft.2015.05.007
  • Gandomi, A. H., Yun, G. J., & Alavi, A. H. (2013). An evolutionary approach for modeling of shear strength of RC deep beams. Materials and Structures, 46(12), 2109–2119. https://doi.org/10.1617/s11527-013-0039-z
  • Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188, 361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207
  • Ghanizadeh, A. R., Bayat, M., Tavana Amlashi, A., & Rahrovan, M. (2019). Prediction of unconfined compressive strength of clay subgrade soil stabilized with Portland cement and lime using Group Method of Data Handling (GMDH). Journal of Transportation Infrastructure Engineering, 5(1), 77–96. https://doi.org/10.22075/jtie.2018.15199.1322
  • Ghanizadeh, A. R., Heidarabadizadeh, N., Bayat, M., & Khalifeh, V. (2022). Modeling of unconfined compressive strength and Young’s modulus of lime and cement stabilized clayey subgrade soil using Evolutionary Polynomial Regression (EPR). International Journal of Mining and Geo-Engineering, 56(3), 257–269. https://doi.org/10.22059/ijmge.2022.306688.594858
  • Ghanizadeh, A. R., & Naseralavi, S. S. (2023). Intelligent prediction of unconfined compressive strength and Young’s modulus of lean clay stabilized with iron ore mine tailings and hydrated lime using gaussian process regression. Journal of Soft Computing in Civil Engineering, 7(4), 1–25. https://doi.org/10.22115/scce.2023.370814.1573
  • Ghanizadeh, A. R., & Rahrovan, M. (2019). Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline. Frontiers of Structural and Civil Engineering, 13(4), 787–799. https://doi.org/10.1007/s11709-019-0516-8
  • Ghanizadeh, A. R., Rahrovan, M., & Bafghi, K. B. (2018). The effect of cement and reclaimed asphalt pavement on the mechanical properties of stabilized base via full-depth reclamation. Construction and Building Materials, 161, 165–174. https://doi.org/10.1016/j.conbuildmat.2017.11.124
  • Ghanizadeh, A. R., & Safi Jahanshahi, F. (2023). A case study on potential use of stabilized mine overburden wastes as pavement materials. Transportation Infrastructure Geotechnology, 1-35. https://doi.org/10.1007/s40515-023-00307-0
  • Ghanizadeh, A. R., Safi Jahanshahi, F., Khalifeh, V., & Jalali, F. (2020). Predicting flow number of asphalt mixtures based on the marshall mix design parameters using Multivariate Adaptive Regression Spline (MARS). International Journal of Transportation Engineering, 7(4), 433–448.
  • Ghanizadeh, A. R., Zolfaghari, M., & Abbaslou, H. (2020). Mechanical Properties and durability of clayey subgrade stabilized with iron ore mine tailing and hydrated lime. Journal of Transportation Infrastructure Engineering, 6(3), 69–88. https://doi.org/10.22075/jtie.2020.18494.1410
  • Ghorbani, A., & Hasanzadehshooiili, H. (2018). Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and Foundations, 58(1), 34–49. https://doi.org/10.1016/j.sandf.2017.11.002
  • Gnananandarao, T., Dutta, R. K., Khatri, V. N., & Kumar, M. S. (2022). Soft computing based prediction of unconfined compressive strength of fly ash stabilised organic clay. Journal of Soft Computing in Civil Engineering, 6(4), 43–58. https://doi.org/10.22115/scce.2022.339698.1429
  • Gorakhki, M. H., & Bareither, C. A. (2017). Unconfined compressive strength of synthetic and natural mine tailings amended with fly ash and cement. Journal of Geotechnical and Geoenvironmental Engineering, 143(7), 04017017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001678
  • Güllü, H. (2014). Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom ash. Engineering Applications of Artificial Intelligence, 35, 143–157. https://doi.org/10.1016/j.engappai.2014.06.020
  • Hu, L. M., Lv, X. L., Gao, D. Y., Yan, K. B., & Song, S. Q. (2014). Analysis of the influence of clay dosage and curing age on the strength of plastic concrete. Advanced Materials Research, 936, 1433–1437. https://doi.org/10.4028/www.scientific.net/AMR.936.1433
  • Iqbal, M. F., Liu, Q., Azim, I., Zhu, X., Yang, J., Javed, M. F., & Rauf, M. (2020). Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. Journal of Hazardous Materials, 384, 121322. https://doi.org/10.1016/j.jhazmat.2019.121322
  • Javed, M. F., Amin, M. N., Shah, M. I., Khan, K., Iftikhar, B., Farooq, F., Aslam, F., Alyousef, R., & Alabduljabbar, H. (2020). Applications of gene expression programming and regression techniques for estimating compressive strength of bagasse ash based concrete. Crystals, 10(9), 737. https://doi.org/10.3390/cryst10090737
  • Jekabsons, G. (2011). ARESLab: Adaptive regression splines toolbox for Matlab/Octave. http://www.cs.rtu.lv/Jekabsons.
  • Jong, S. C., Ong, D. E. L., & Oh, E. (2021). State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction. Tunnelling and Underground Space Technology, 113, 103946. https://doi.org/10.1016/j.tust.2021.103946
  • Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108–117. https://doi.org/10.1016/j.cageo.2012.07.001
  • Kumar, A., Arora, H. C., Kumar, K., & Garg, H. (2023). Performance prognosis of FRCM-to-concrete bond strength using ANFIS-based fuzzy algorithm. Expert Systems with Applications, 216, 119497. https://doi.org/10.1016/j.eswa.2022.119497
  • Kumar, A., Arora, H. C., Kumar, K., Mohammed, M. A., Majumdar, A., Khamaksorn, A., & Thinnukool, O. (2022). Prediction of FRCM–Concrete Bond Strength with Machine Learning Approach. Sustainability, 14(2), 845. https://doi.org/10.3390/su14020845
  • Kumar, K., & Saini, R. P. (2022). Development of correlation to predict the efficiency of a hydro machine under different operating conditions. Sustainable Energy Technologies and Assessments, 50, 101859. https://doi.org/10.1016/j.seta.2021.101859
  • Kuranchie, F. A. (2015). Characterisation and applications of iron ore tailings in buildings and construction projects [Thesis]. http://ro.ecu.edu.au/theses/1685/
  • Lekha, B. M., Ravi Shankar, A. U., & Sarang, G. (2013). Fatigue and engineering properties of chemically stabilized soil for pavements. Indian Geotechnical Journal, 43(1), 96–104. https://doi.org/10.1007/s40098-012-0031-5
  • Liming, L. (Ed.). (2015). Iron ore: Mineralogy, processing and environmental sustainability. Elsevier. https://doi.org/10.1016/C2013-0-16476-8
  • Liu, L., Zhou, A., Deng, Y., Cui, Y., Yu, Z., & Yu, C. (2019). Strength performance of cement/slag-based stabilized soft clays. Construction and Building Materials, 211, 909–918. https://doi.org/10.1016/j.conbuildmat.2019.03.256
  • Manjarrez, L., & Zhang, L. (2018). Utilization of copper mine tailings as road base construction material through geopolymerization. Journal of Materials in Civil Engineering, 30(9), 1-12 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002397
  • Mohammadzadeh, S. D., Kazemi, S.-F., Mosavi, A., Nasseralshariati, E., & Tah, J. H. M. (2019). Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures, 4(2), 26. https://doi.org/10.3390/infrastructures4020026
  • Mojtahedi, F. F., Ahmadihosseini, A., & Sadeghi, H. (2023). An artificial intelligence based data-driven method for forecasting unconfined compressive strength of cement stabilized soil by deep mixing technique. Geotechnical and Geological Engineering, 41(1), 491–514. https://doi.org/10.1007/s10706-022-02297-1
  • MolaAbasi, H., & Shooshpasha, I. (2016). Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network. The European Physical Journal Plus, 131(4), 108. https://doi.org/10.1140/epjp/i2016-16108-5
  • Muduli, P. K., Das, M. R., Samui, P., & Kumar Das, S. (2013). Uplift Capacity of Suction Caisson in Clay Using Artificial Intelligence Techniques. Marine Georesources & Geotechnology, 31(4), 375–390. https://doi.org/10.1080/1064119X.2012.690827
  • Naser, A. H., Badr, A. H., Henedy, S. N., Ostrowski, K. A., & Imran, H. (2022). Application of Multivariate Adaptive Regression Splines (MARS) approach in prediction of compressive strength of eco-friendly concrete. Case Studies in Construction Materials, 17, e01262. https://doi.org/10.1016/j.cscm.2022.e01262
  • Naumovich, V. V., & Vlamimir, V. (1998). Statistical learning theory. Wiley New York.
  • Ngo, H. T. T., Pham, T. A., Vu, H. L. T., & Giap, L. V. (2021). Application of artificial intelligence to determined unconfined compressive strength of cement-stabilized soil in Vietnam. Applied Sciences, 11(4), 1949. https://doi.org/10.3390/app11041949
  • Nissanka, N. A. N. M., Nimesha, K. M. D., & Nasvi, M. C. M, S. (2023). Prediction of geotechnical properties of stabilized soil using fly ash-based stabilizer systems. In R. Dissanayake, P. Mendis, K. Weerasekera, S. Fernando, & C. Konthesingha (Eds.), 12th International Conference on Structural Engineering and Construction Management (pp. 297–314). Springer Nature.
  • Ojuri, O. O., Adavi, A. A., & Oluwatuyi, O. E. (2017). Geotechnical and environmental evaluation of lime–cement stabilized soil–mine tailing mixtures for highway construction. Transportation Geotechnics, 10, 1–12. https://doi.org/10.1016/j.trgeo.2016.10.001
  • Onyelowe, K. C., Ebid, A. M., Onyia, M. E., & Nwobia, L. I. (2021). Predicting nanocomposite binder improved unsaturated soil UCS using genetic programming. Nanotechnology for Environmental Engineering, 6(2), 39. https://doi.org/10.1007/s41204-021-00134-z
  • Pongsivasathit, S., Horpibulsuk, S., & Piyaphipat, S. (2019). Assessment of mechanical properties of cement stabilized soils. Case Studies in Construction Materials, 11, e00301. https://doi.org/10.1016/j.cscm.2019.e00301
  • Premarathne, R. P. P. K., & Sawangsuriya, A. (2021). Prediction of unconfined compressive strength of cement stabilized pavement materials. IOP Conference Series: Materials Science and Engineering, 1075(1), 012008. https://doi.org/10.1088/1757-899X/1075/1/012008
  • Pu, S., Zhu, Z., Song, W., Wan, Y., Wang, H., Song, S., & Zhang, J. (2020). Mechanical and Microscopic Properties of Cement Stabilized Silt. KSCE Journal of Civil Engineering, 24(8), 2333–2344. https://doi.org/10.1007/s12205-020-1671-0
  • Ramachandra, R., & Mandal, S. (2023). Prediction of fly ash concrete type using ANN and SVM models. Innovative Infrastructure Solutions, 8(1), 47. https://doi.org/10.1007/s41062-022-01014-4
  • Saadat, M., & Bayat, M. (2022). Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). Geomechanics and Geoengineering, 17(1), 80–91. https://doi.org/10.1080/17486025.2019.1699668
  • Salehi, M., Bayat, M., Saadat, M., & Nasri, M. (2021). Experimental study on mechanical properties of cement-stabilized soil blended with crushed stone waste. KSCE Journal of Civil Engineering, 25(6), 1974–1984. https://doi.org/10.1007/s12205-021-0953-5
  • Samui, P. (2008). Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 35(3), 419–427. https://doi.org/10.1016/j.compgeo.2007.06.014
  • Sani, J. E., Etim, R. K., & Joseph, A. (2019). Compaction behaviour of lateritic soil–calcium chloride mixtures. Geotechnical and Geological Engineering, 37(4), 2343–2362. https://doi.org/10.1007/s10706-018-00760-6
  • Schatzmayr Welp Sá, T., Oda, S., Balthar, V. K. C. B. L., & Dias Toledo Filho, R. (2022). Use of iron ore tailings and sediments on pavement structure. Construction and Building Materials, 342, 128072. https://doi.org/10.1016/j.conbuildmat.2022.128072
  • Shah, H. A., Rehman, S. K. U., Javed, M. F., & Iftikhar, Y. (2022). Prediction of compressive and splitting tensile strength of concrete with fly ash by using gene expression programming. Structural Concrete, 23(4), 2435–2449. https://doi.org/10.1002/suco.202100213
  • Shahin, M. A. (2015a). Genetic programming for modelling of geotechnical engineering systems. In Handbook of Genetic Programming Applications (pp. 37–57). Springer International Publishing. https://doi.org/10.1007/978-3-319-20883-1_2
  • Shahin, M. A. (2015b). Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomechanics and Geoengineering, 10(2), 109–125. https://doi.org/10.1080/17486025.2014.921333
  • Singh, S. P., Tripathy, D. P., & Ranjith, P. G. (2008). Performance evaluation of cement stabilized fly ash–GBFS mixes as a highway construction material. Waste Management (New York, N.Y.), 28(8), 1331–1337. https://doi.org/10.1016/j.wasman.2007.09.017
  • Suman, S., Mahamaya, M., & Das, S. K. (2016). Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. International Journal of Geosynthetics and Ground Engineering, 2(2), 11. https://doi.org/10.1007/s40891-016-0051-9
  • Swami, R. K., Pundhir, N. K. S., & Mathur, S. (2007). Kimberlite tailings: A road construction material. Transportation Research Record, 1989-2(1), 131–134. https://doi.org/10.3141/1989-56
  • Tabarsa, A., Latifi, N., Osouli, A., & Bagheri, Y. (2021). Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines. Frontiers of Structural and Civil Engineering, 15(2), 520–536. https://doi.org/10.1007/s11709-021-0689-9
  • Taffese, W. Z., & Abegaz, K. A. (2022). Prediction of compaction and strength properties of amended soil using machine learning. Buildings, 12(5), 613. https://doi.org/10.3390/buildings12050613
  • Taslimi Paein Afrakoti, M., Janalizadeh Choobbasti, A., Ghadakpour, M., & Soleimani Kutanaei, S. (2020). Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil. Construction and Building Materials, 239, 117848. https://doi.org/10.1016/j.conbuildmat.2019.117848
  • Tran, V. Q. (2022). Hybrid gradient boosting with meta-heuristic algorithms prediction of unconfined compressive strength of stabilized soil based on initial soil properties, mix design and effective compaction. Journal of Cleaner Production, 355, 131683. https://doi.org/10.1016/j.jclepro.2022.131683
  • Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation and signal processing. In M. C. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems (Vol. 9, pp, 281–287). MIT Press
  • Walker, H. M. (1929). Studies in the history of statistical method: With special reference to certain educational problems. Williams & Wilkins Co.
  • Wang, X., Zhang, Z., Song, Z., & Li, J. (2022). Engineering properties of marine soft clay stabilized by alkali residue and steel slag: An experimental study and ANN model. Acta Geotechnica, 17(11), 5089–5112. https://doi.org/10.1007/s11440-022-01498-5
  • Zhang, B., Li, K., Zhang, S., Hu, Y., & Han, B. (2022). A modeling method for predicting the strength of cemented paste backfill based on a combination of aggregate gradation optimization and LSTM. Journal of Renewable Materials, 10(12), 3539–3558. https://doi.org/10.32604/jrm.2022.021845
  • Zilaei, M., & Ghanizadeh, A. (2021). Strength and durability of iron ore tailing materials stabilized using Portland cement as base materials: A case study of Golgohar mine. Journal of Transportation Infrastructure Engineering, 7(2), 101–122. https://doi.org/10.22075/jtie.2021.21823.1490

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.