111
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Assessing the engineering properties of massive self-compacting geopolymer concretes utilising the Taguchi method

&
Pages 1788-1812 | Received 06 May 2023, Accepted 18 Oct 2023, Published online: 05 Dec 2023

References

  • ACI Committee 116R-00. (2007). Cement and concrete terminology. ACI Manual of Concrete Practice. American Concrete Institute.
  • ACI Committee 207.1R-05. (2005). Guide to mass concrete. ACI Manual of Concrete Practice. Part 1. American Concrete Institute.
  • ACI Committee 301-20. (2020). Specifications for concrete construction. ACI Manual of Concrete Practice.
  • ACI Committee 318-19. (2019). Building code requirements for structural concrete and commentary. American Concrete Institute.
  • Adesina, A. (2020). Performance and sustainability overview of alkali-activated self-compacting concrete. Waste Disposal & Sustainable Energy, 2(3), 165–175. https://doi.org/10.1007/s42768-020-00045-w
  • Ahmed, H. U., Mohammed, A. S., Qaidi, S. M., Faraj, R. H., Hamah Sor, N., & Mohammed, A. A. (2023). Compressive strength of geopolymer concrete composites: A systematic comprehensive review, analysis and modeling. European Journal of Environmental and Civil Engineering, 27(3), 1383–1428. https://doi.org/10.1080/19648189.2022.2083022
  • Amran, Y. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete: A review. Journal of Cleaner Production, 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679
  • Arun, B. R., Nagaraja, P. S., & Srishaila, J. M. (2019). An effect of NaOH molarity on fly ash—Metakaolin-based self-compacting geopolymer concrete. In Sustainable construction and building materials: Select Proceedings of ICSCBM 2018 (pp. 233–244). Springer. https://doi.org/10.1007/978-981-13-3317-0_21
  • ASTM C1611. (2018). Standard test method for slump flow of self-consolidating concrete. American Society for Testing and Materials.
  • ASTM C33. (2003). Standard specification for concrete aggregates. American Society for Testing and Materials.
  • ASTM C469. (2002). Standard test method for static modulus of elasticity and Poisson ratio of concrete in compression. ASTM Standards, American Society for Testing and Materials.
  • ASTM C496. (2004). Standard test method for splitting tensile strength of cylindrical concrete specimens. Annual Book of ASTM Standards. American Society for Testing and Materials.
  • ASTM C618. (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American Society for Testing and Materials.
  • ASTM C642. (2013). Standard test method for density, absorption, and voids in hardened concrete. Annual Book of ASTM Standards. American Society for Testing and Materials.
  • Bayrak, B., Benli, A., Alcan, H. G., Çelebi, O., Kaplan, G., & Aydın, A. C. (2023). Recycling of waste marble powder and waste colemanite in ternary-blended green geopolymer composites: Mechanical, durability and microstructural properties. Journal of Building Engineering, 73, 106661. https://doi.org/10.1016/j.jobe.2023.106661
  • Bilcik, J., Sonnenschein, R., & Holly, I. (2018). Causes of and responsibilities for an excessive amount of leaking cracks in a massive concrete mat foundation. Journal of Performance of Constructed Facilities, 32(2), 04017134. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001130
  • Bobko, C. P., Edwards, A. J., Seracino, R., & Zia, P. (2015). Thermal cracking of mass concrete bridge footings in coastal environments. Journal of Performance of Constructed Facilities, 29(6), 04014171. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000664
  • Bondar, D., Lynsdale, C. J., Ramezanianpour, A. A., & Milestone, N. B. (2020). Alkali-activation of natural pozzolan for geopolymer cement production. In Sustainable construction materials and technologies (pp. 313–317). CRC Press.
  • Boubekeur, T., Ezziane, K., & Kadri, E. H. (2014). Estimation of mortars compressive strength at different curing temperature by the maturity method. Construction and Building Materials, 71, 299–307. https://doi.org/10.1016/j.conbuildmat.2014.08.084
  • Bougara, A., Lynsdale, C., & Milestone, N. B. (2018). The influence of slag properties, mix parameters and curing temperature on hydration and strength development of slag/cement blends. Construction and Building Materials, 187, 339–347. https://doi.org/10.1016/j.conbuildmat.2018.07.166
  • BS-EN-12390-3. (2009). Testing hardened concrete: Compressive strength of test specimens. BSI.
  • Comité Euro-International du Béton. (1993). CEB-FIP model code 1990: Design code. Thomas Telford Publishing.
  • Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. https://doi.org/10.1007/BF01912193
  • De Matos, P. R., Junckes, R., Graeff, E., & Prudencio Jr, L. R. (2020). Effectiveness of fly ash in reducing the hydration heat release of mass concrete. Journal of Building Engineering, 28, 101063. https://doi.org/10.1016/j.jobe.2019.101063
  • De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H., & Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279–291. https://doi.org/10.1016/j.cemconres.2010.11.014
  • Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2016). Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement and Concrete Composites, 72, 235–245. https://doi.org/10.1016/j.cemconcomp.2016.06.017
  • Ding, Y., Dai, J. G., & Shi, C. J. (2016). Mechanical properties of alkali-activated concrete: A state-of-the-art review. Construction and Building Materials, 127, 68–79. https://doi.org/10.1016/j.conbuildmat.2016.09.121
  • Djayaprabha, H. S., Chang, T. P., Shih, J. Y., & Nguyen, H. A. (2020). Improving the mechanical and durability performance of No-cement self-compacting concrete by fly ash. Journal of Materials in Civil Engineering, 32(9), 04020245. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003281
  • Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  • EFNARC. (2005). The European guidelines for self-compacting concrete: Specification, production and use.
  • Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed Ali, M. S., Xie, T., & Yang, B. (2018). Development of fly ash-and slag-based geopolymer concrete with calcium carbonate or microsilica. Journal of Materials in Civil Engineering, 30(12), 04018325. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002527
  • Fang, G., Ho, W. K., Tu, W., & Zhang, M. (2018). Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Construction and Building Materials, 172, 476–487. https://doi.org/10.1016/j.conbuildmat.2018.04.008
  • Feng, W., Wan, Z., Daniels, J., Li, Z., Xiao, G., Yu, J., Xu, D., Guo, H., Zhang, D., May, E. F., & Li, G. (. (2018). Synthesis of high-quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications. Journal of Cleaner Production, 202, 390–400. https://doi.org/10.1016/j.jclepro.2018.08.140
  • Fernández-Jiménez, A. M., Palomo, A., & Lopez-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103(2), 106.
  • Gebregziabiher, B. S., Thomas, R., & Peethamparan, S. (2015). Very early-age reaction kinetics and microstructural development in alkali-activated slag. Cement and Concrete Composites, 55, 91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001
  • Ghorbankhani, A. H., & Nili, M. (2022). Experimental and numerical assessment of thermal properties of self-compacting mass concrete at early ages. European Journal of Environmental and Civil Engineering, 26(16), 8194–8211. https://doi.org/10.1080/19648189.2021.2021293
  • Hardjito, D., Wallah, S. E., Sumajouw, D. M., & Rangan, B. V. (2004). Factors influencing the compressive strength of fly ash-based geopolymer concrete. Civil Engineering Dimension, 6(2), 88–93. https://doi.org/10.9744/ced.6.2.pp.%2088-93
  • Hassan, A., Arif, M., & Shariq, M. (2020). A review of properties and behavior of reinforced geopolymer concrete structural elements-A clean technology option for sustainable development. Journal of Cleaner Production, 245, 118762. https://doi.org/10.1016/j.jclepro.2019.118762
  • He, X., Zheng, Z., Ma, M., Su, Y., Yang, J., Tan, H., Wang, Y., & Strnadel, B. (2020). New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. Journal of Cleaner Production, 242, 118347. https://doi.org/10.1016/j.jclepro.2019.118347
  • Henigal, A. M., Sherif, M. A., & Hassan, H. H. (2017). Study on properties of self-compacting geopolymer concrete. IOSR Journal of Mechanical and Civil Engineering, 14(02), 52–66. https://doi.org/10.9790/1684-1402075266
  • Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006
  • Jang, J. G., Lee, N. K., & Lee, H. K. (2014). Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Construction and Building Materials, 50, 169–176. https://doi.org/10.1016/j.conbuildmat.2013.09.048
  • Karatas, M., Dener, M., Mohabbi, M., & Benli, A. (2019). A study on the compressive strength and microstructure characteristic of alkali-activated metakaolin cement. Matéria (Rio de Janeiro), 24(4), 1-11. https://doi.org/10.1590/s1517-707620190004.0832
  • Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729–746. https://doi.org/10.1007/s10853-006-0401-4
  • Khan, M. S. H., Castel, A., Akbarnezhad, A., Foster, S. J., & Smith, M. (2016). Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete. Cement and Concrete Research, 89, 220–229. https://doi.org/10.1016/j.cemconres.2016.09.001
  • Klemczak, B., Batog, M., Pilch, M., & Żmij, A. (2017). Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia Engineering, 193, 234–241. https://doi.org/10.1016/j.proeng.2017.06.209
  • Koksal, F., Bayraktar, O. Y., Bodur, B., Benli, A., & Kaplan, G. (2023). Insulating and fire‐resistant performance of slag and brick powder based one‐part alkali‐activated lightweight mortars. Structural Concrete, 24(3), 3128–3146. https://doi.org/10.1002/suco.202200607
  • Komnitsas, K. A. (2011). Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Engineering, 21, 1023–1032. https://doi.org/10.1016/j.proeng.2011.11.2108
  • Kuriakose, B., Rao, B. N., & Dodagoudar, G. R. (2016). Early-age temperature distribution in a massive concrete foundation. Procedia Technology, 25, 107–114. https://doi.org/10.1016/j.protcy.2016.08.087
  • Li, J., Wang, K., & Jahren, C. (2012). Predicting early-age thermal behavior of mass concrete for bridge foundation [Thesis]. Iowa State University. https://doi.org/10.31274/etd-180810-2410
  • Ling, Y., Wang, K., Wang, X., & Hua, S. (2019). Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer. Construction and Building Materials, 228, 116763. https://doi.org/10.1016/j.conbuildmat.2019.116763
  • Manjunath, R., & Narasimhan, M. C. (2018). An experimental investigation on self-compacting alkali activated slag concrete mixes. Journal of Building Engineering, 17, 1–12. https://doi.org/10.1016/j.jobe.2018.01.009
  • Manjunath, R., Narasimhan, M. C., Umesh, K. M., Kumar, S., & Bala Bharathi, U. K. (2019). Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Construction and Building Materials, 198, 133–147. https://doi.org/10.1016/j.conbuildmat.2018.11.242
  • Maruyama, I., & Lura, P. (2019). Properties of early-age concrete relevant to cracking in massive concrete. Cement and Concrete Research, 123, 105770. https://doi.org/10.1016/j.cemconres.2019.05.015
  • Moghaddam, S. C., Madandoust, R., Jamshidi, M., & Nikbin, I. M. (2021). Mechanical properties of fly ash-based geopolymer concrete with crumb rubber and steel fiber under ambient and sulfuric acid conditions. Construction and Building Materials, 281, 122571. https://doi.org/10.1016/j.conbuildmat.2021.122571
  • Mohamed, R., Abd Razak, R., Abdullah, M. M. A. B., Shuib, R. K., Mortar, N. A. M., & Zailani, W. W. A. (2019). Investigation of heat released during geopolymerization with fly ash based geopolymer. In IOP Conference Series: Materials Science and Engineering (Vol. 551, p. 012093). IOP Publishing. https://doi.org/10.1088/1757-899X/551/1/012093
  • Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
  • Nasr, D., Pakshir, A. H., & Ghayour, H. (2018). The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars. Construction and Building Materials, 190, 108–119. https://doi.org/10.1016/j.conbuildmat.2018.09.099
  • Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  • Nehdi, M. L. (2013). Only tall things cast shadows: Opportunities, challenges and research needs of self-consolidating concrete in super-tall buildings. Construction and Building Materials, 48, 80–90. https://doi.org/10.1016/j.conbuildmat.2013.06.051
  • Neville, A. M. (1995). Properties of concrete (Vol. 4, p. 1995). Longman.
  • Nili, M., & Salehi, A. M. (2010). Assessing the effectiveness of pozzolans in massive high-strength concrete. Construction and Building Materials, 24(11), 2108–2116. https://doi.org/10.1016/j.conbuildmat.2010.04.049
  • Nishanth, L., & Patil, N. N. (2022). Experimental evaluation on workability and strength characteristics of self-consolidating geopolymer concrete based on GGBFS, flyash and alccofine. Materials Today: Proceedings, 59, 51–57. https://doi.org/10.1016/j.matpr.2021.10.200
  • Noushini, A., & Castel, A. (2016). The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Construction and Building Materials, 112, 464–477. https://doi.org/10.1016/j.conbuildmat.2016.02.210
  • Nuruddin, M. N., Kusbiantoro, A. K., Qazi, S. Q., Darmawan, M. D., & Husin, N. H. (2011). Development of geopolymer concrete with different curing conditions. IPTEK: The Journal for Technology and Science, 22(1), 24-28. https://doi.org/10.12962/j20882033.v22i1.54
  • Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials & Design (1980–2015), 36, 191–198. https://doi.org/10.1016/j.matdes.2011.10.036
  • Palomo, Á., Fernández-Jiménez, A., López Hombrados, C., & Lleyda, J. L. (2007). Railway sleepers made of alkali activated fly ash concrete. Revista Ingeniería de Construcción, 22(2), 75–80. http://hdl.handle.net/10261/2182.
  • Pan, Z., Sanjayan, J. G., & Rangan, B. V. (2011). Fracture properties of geopolymer paste and concrete. Magazine of Concrete Research, 63(10), 763–771. https://doi.org/10.1680/macr.2011.63.10.763
  • Patel, Y. J., & Shah, N. (2018). Development of self-compacting geopolymer concrete as a sustainable construction material. Sustainable Environment Research, 28(6), 412–421. https://doi.org/10.1016/j.serj.2018.08.004
  • Patel, Y. J., & Shah, N. (2018). Enhancement of the properties of ground granulated blast furnace slag based self-compacting geopolymer concrete by incorporating rice husk ash. Construction and Building Materials, 171, 654–662. https://doi.org/10.1016/j.conbuildmat.2018.03.166
  • Provis, J. L., & Van Deventer, J. S. J. (Eds.). (2009). Geopolymers: Structures, processing, properties and industrial applications. Elsevier. ISBN: 978-1-84569-449-4
  • Provis, J. L., Myers, R. J., White, C. E., Rose, V., & Van Deventer, J. S. (2012). X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 42(6), 855–864. https://doi.org/10.1016/j.cemconres.2012.03.004
  • Rabie, M., Irshidat, M. R., & Al-Nuaimi, N. (2022). Ambient and heat-cured geopolymer composites: Mix design optimization and life cycle assessment. Sustainability, 14(9), 4942. https://doi.org/10.3390/su14094942
  • Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023
  • Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. https://doi.org/10.1016/j.serj.2017.09.001
  • Samadi, M., Huseien, G. F., Mohammad Hosseini, H., Lee, H. S., Lim, N. H. A. S., Tahir, M. M., & Alyousef, R. (2020). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. https://doi.org/10.1016/j.jclepro.2020.121825
  • Shanahan, N., Tran, V., & Zayed, A. (2017). Heat of hydration prediction for blended cements. Journal of Thermal Analysis and Calorimetry, 128(3), 1279–1291. https://doi.org/10.1007/s10973-016-6059-5
  • Shi, C., & Day, R. L. (1995). A calorimetric study of early hydration of alkali-slag cements. Cement and Concrete Research, 25(6), 1333–1346. https://doi.org/10.1016/0008-8846(95)00126-W
  • Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016
  • Shi, C., Roy, D., & Krivenko, P. (2003). Alkali-activated cements and concretes. CRC press.
  • Şimşek, B., İç, Y. T., & Şimşek, E. H. (2013). A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete. Chemometrics and Intelligent Laboratory Systems, 125, 18–32. https://doi.org/10.1016/j.chemolab.2013.03.012
  • Suji, D., Adesina, A., & Mirdula, R. (2021). Optimization of self-compacting composite composition using Taguchi-Grey relational analysis. Materialia, 15, 101027. https://doi.org/10.1016/j.mtla.2021.101027
  • Taghvayi, H., Behfarnia, K., & Khalili, M. (2018). The effect of alkali concentration and sodium silicate modulus on the properties of alkali-activated slag concrete. Journal of Advanced Concrete Technology, 16(7), 293–305. https://doi.org/10.3151/jact.16.293
  • Tahersima, M., & Tikalsky, P. (2017). Finite element modeling of hydration heat in a concrete slab-on-grade floor with limestone blended cement. Construction and Building Materials, 154, 44–50. https://doi.org/10.1016/j.conbuildmat.2017.07.176
  • Tankasala, A., & Schindler, A. K. (2020). Early-age cracking of lightweight mass concrete. ACI Materials Journal, 117(1), 223–232. https://doi.org/10.14359/51719082
  • Tankasala, A., Schindler, A. K., & Riding, K. A. (2017). Risk of thermal cracking from use of lightweight aggregate in mass concrete. Transportation Research Record: Journal of the Transportation Research Board, 2629(1), 42–50. https://doi.org/10.3141/2629-07
  • Turkoglu, M., Bayraktar, O. Y., Benli, A., & Kaplan, G. (2023). Effect of cement clinker type, curing regime and activator dosage on the performance of one-part alkali-activated hybrid slag/clinker composites. Journal of Building Engineering, 68, 106164. https://doi.org/10.1016/j.jobe.2023.106164
  • Vo, D. H., Thi, K. D. T., Hwang, C. L., Liao, M. C., Hsu, W. L., & Yehualaw, M. D. (2023). Mechanical properties of concrete produced with alkali-activated slag-fly ash and recycled concrete aggregate and designed using the densified mixture design algorithm (DMDA) method: Effects of recycled aggregate content and alkaline solution. Developments in the Built Environment, 14, 100125. https://doi.org/10.1016/j.dibe.2023.100125
  • Wang, K., Sargam, Y., Riding, K., Faytarouni, M., Jahren, C., & Shen, J. (2020). Evaluate, modify, and adapt the ConcreteWorks Software for Iowa’s use (No. IHRB Project TR-712). Iowa State University, Institute for Transportation.
  • Wei, X., Li, D., Ming, F., Yang, C., Chen, L., & Liu, Y. (2021). Influence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortar. Construction and Building Materials, 269, 121811. https://doi.org/10.1016/j.conbuildmat.2020.121811
  • Yadollahi, M. M., & Benli, A. (2017). Stress-strain behavior of geopolymer under uniaxial compression. Computers and Concrete, 20(4), 381–389. https://doi.org/10.12989/cac.2017.20.4.381
  • Yadollahi, M. M., Benli, A., & Demirboğa, R. (2015). Effects of elevated temperature on pumice based geopolymer composites. Plastics, Rubber and Composites, 44(6), 226–237. https://doi.org/10.1179/1743289815Y.0000000020
  • Yadollahi, M. M., Benli, A., & Demirboğa, R. (2015). The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Construction and Building Materials, 94, 767–774. https://doi.org/10.1016/j.conbuildmat.2015.07.052
  • Yadollahi, M. M., Benli, A., & Demirboga, R. (2017). Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites. Neural Computing and Applications, 28(6), 1453–1461. https://doi.org/10.1007/s00521-015-2159-6
  • Zayed, A. (2013). Effects of portland cement particle size on heat of hydration (No. BDK84 977-13). Florida Department of Transportation Research Center. https://rosap.ntl.bts.gov/view/dot/26987

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.