146
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional discretization-based kinematic analyses of prestressed anchor cables reinforced rotational slopes subjected to earthquakes

, &
Pages 1898-1923 | Received 03 Mar 2023, Accepted 10 Nov 2023, Published online: 25 Dec 2023

References

  • Bellezza, I. (2015). Seismic active earth pressure on walls using a new pseudo-dynamic approach. Geotechnical and Geological Engineering, 33(4), 795–812. https://doi.org/10.1007/s10706-015-9860-1
  • Bi, J., Luo, X., Zhang, H., & Shen, H. (2019). Stability analysis of complex rock slopes reinforced with prestressed anchor cables and anti-shear cavities. Bulletin of Engineering Geology and the Environment, 78(3), 2027–2039. https://doi.org/10.1007/s10064-017-1171-8
  • Chang, S., Zhang, S., & Xiang, B. (2007). China Construction Industry Press.
  • Chen, W. F. (1975). Limit analysis and soil plasticity. Elsevier.
  • Chen, Z., Wang, X., Haberfield, C., Yin, J. H., & Wang, Y. (2001). A three-dimensional slope stability analysis method using the upper bound theorem Part. International Journal of Rock Mechanics and Mining Sciences, 38(3), 369–378. https://doi.org/10.1016/S1365-1609(01)00012-0
  • Choudhury, D., & Nimbalkar, S. (2005). Seismic passive resistance by pseudo-dynamic method. Géotechnique, 55(9), 699–702. https://doi.org/10.1680/geot.2005.55.9.699
  • Choudhury, D., & Nimbalkar, S. (2007). Seismic rotational displacement of gravity walls by pseudo-dynamic method: Passive case. Soil Dynamics and Earthquake Engineering, 27(3), 242–249. https://doi.org/10.1016/j.soildyn.2006.06.009
  • Deng, D. P., Li, L., & Zhao, L. H. (2021). Stability analysis of slopes reinforced with anchor cables and optimal design of anchor cable parameters. European Journal of Environmental and Civil Engineering, 25(13), 2425–2440. https://doi.org/10.1080/19648189.2019.1631216
  • Fan, G., Zhang, J. J., Qi, S. C., & Wu, J. B. (2019). Dynamic response of a slope reinforced by double-row anti-sliding piles and pre-stressed anchor cables. Journal of Mountain Science, 16(1), 226–241. https://doi.org/10.1007/s11629-018-5041-z
  • Fathipour, H., Payan, M., Jamshidi Chenari, R., & Senetakis, K. (2021a). Lower bound analysis of modified pseudo‐dynamic lateral earth pressures for retaining wall‐backfill system with depth‐varying damping using FEM‐second order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics, 45(16), 2371–2387. https://doi.org/10.1002/nag.3269
  • Fathipour, H., Siahmazgi, A. S., Payan, M., Veiskarami, M., & Jamshidi Chenari, R. (2021b). Limit analysis of modified pseudodynamic lateral earth pressure in anisotropic frictional medium using finite-element and second-order cone programming. International Journal of Geomechanics, 21(2), 04020258. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001924
  • Ghosh, P. (2008). Seismic active earth pressure behind a nonvertical retaining wall using pseudo-dynamic analysis. Canadian Geotechnical Journal, 45(1), 117–123. https://doi.org/10.1139/T07-071
  • He, M., Ribeiro e Sousa, L., Müller, A., Vargas, E., Sousa, R. L., Oliveira, C. S., & Gong, W. (2019). Numerical and safety considerations about the Daguangbao landslide induced by the 2008 Wenchuan earthquake. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 1019–1035. https://doi.org/10.1016/j.jrmge.2019.05.004
  • He, S., Ouyang, C., & Luo, Y. (2012). Seismic stability analysis of soil nail reinforced slope using kinematic approach of limit analysis. Environmental Earth Sciences, 66(1), 319–326. https://doi.org/10.1007/s12665-011-1241-3
  • Jiang, Q., Qi, Z., Wei, W., & Zhou, C. (2015). Stability assessment of a high rock slope by strength reduction finite element method. Bulletin of Engineering Geology and the Environment, 74(4), 1153–1162. https://doi.org/10.1007/s10064-014-0698-1
  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (4), 1942–1948. IEEE
  • Kolathayar, S., & Ghosh, P. (2009). Seismic active earth pressure on walls with bilinear backface using pseudo-dynamic approach. Computers and Geotechnics, 36(7), 1229–1236. https://doi.org/10.1016/j.compgeo.2009.05.015
  • Krishnan, K., & Chakraborty, D. (2021). Seismic bearing capacity of strip footing over spatially random soil using modified pseudo-dynamic approach. Computers and Geotechnics, 136, 104219. https://doi.org/10.1016/j.compgeo.2021.104219
  • Li, X., He, S., & Wu, Y. (2012). Limit analysis of the stability of slopes reinforced with anchors. International Journal for Numerical and Analytical Methods in Geomechanics, 36(17), 1898–1908. https://doi.org/10.1002/nag.1093
  • Manna, D., Santhoshkumar, G., & Ghosh, P. (2021). Upper-bound limit load of rigid pavements resting on reinforced soil embankments–Kinematic approach. Transportation Geotechnics, 30, 100611. https://doi.org/10.1016/j.trgeo.2021.100611
  • Michalowski, R. L. (1989). Three-dimensional analysis of locally loaded slopes. Géotechnique, 39(1), 27–38. https://doi.org/10.1680/geot.1989.39.1.27
  • Michalowski, R. L. (1995). Slope stability analysis: A kinematical approach. Géotechnique, 45(2), 283–293. https://doi.org/10.1680/geot.1995.45.2.283
  • Michalowski, R. L., & Drescher, A. (2009). Three-dimensional stability of slopes and excavations. Géotechnique, 59(10), 839–850. https://doi.org/10.1680/geot.8.P.136
  • Ministry of Housing and Urban Rural Development of the People’s Republic of China. (2010). Chinese code for seismic design of railway engineering. Chinese Building Industry Press.
  • Ministry of Railways of the People’s Republic of China. (2019). Chinese code for seismic design of railway engineering. Chinese Railway Press.
  • Mohammed, M., Wan, L., & Wei, Z. (2015). Slope stability analysis of Southern slope of Chengmenshan copper mine, China. International Journal of Mining Science and Technology, 25(2), 171–175. https://doi.org/10.1016/j.ijmst.2015.02.002
  • Mollon, G., Dias, D., & Soubra, A. H. (2011). Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield. International Journal for Numerical and Analytical Methods in Geomechanics, 35(12), 1363–1388. https://doi.org/10.1002/nag.962
  • Nandi, S., Santhoshkumar, G., & Ghosh, P. (2021). Development of limiting soil slope profile under seismic condition using slip line theory. Acta Geotechnica, 16(11), 3517–3531. https://doi.org/10.1007/s11440-021-01251-4
  • Pan, Q., Xu, J., & Dias, D. (2017). Three-dimensional stability of a slope subjected to seepage forces. International Journal of Geomechanics, 17(8), 04017035. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000913
  • Parkash, S. (2013). Earthquake related landslides in the Indian Himalaya: Experiences from the past and implications for the future. Landslide Science and Practice: Complex Environment, 5, 327–334.
  • Qian, Z. H., Wei, X. X., Huang, Q., & Zou, J. F. (2022). Earth pressure estimation of undrained soil–wall systems with head rotation. International Journal of Geomechanics, 22(6), 04022081. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002380
  • Qian, Z. H., Zou, J. F., & Pan, Q. J. (2021). 3D discretized rotational failure mechanism for slope stability analysis. International Journal of Geomechanics, 21(11), 04021210. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002163
  • Qian, Z. H., Zou, J. F., Pan, Q. J., Chen, G. H., & Liu, S. X. (2020). Discretization-based kinematical analysis of three-dimensional seismic active earth pressures under nonlinear failure criterion. Computers and Geotechnics, 126, 103739. https://doi.org/10.1016/j.compgeo.2020.103739
  • Qian, Z., Zou, J., Pan, Q., & Dias, D. (2019). Safety factor calculations of a tunnel face reinforced with umbrella pipes : A comparison analysis. Engineering Structures, 199(22), 109639. https://doi.org/10.1016/j.engstruct.2019.109639
  • Qin, C., & Chian, S. C. (2018a). Seismic stability of geosynthetic-reinforced walls with variable excitation and soil properties: A discretization-based kinematic analysis. Computers and Geotechnics, 102, 196–205. https://doi.org/10.1016/j.compgeo.2018.06.012
  • Qin, C., & Chian, S. C. (2018b). Seismic ultimate bearing capacity of a Hoek-Brown rock slope using discretization-based kinematic analysis and pseudodynamic methods. International Journal of Geomechanics, 18(6), 04018054. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001147
  • Qin, C., & Chian, S. C. (2019). Impact of earthquake characteristics on seismic slope stability using modified pseudodynamic method. International Journal of Geomechanics, 19(9), 04019106. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001489
  • Qin, C., & Chian, S. C. (2020). Discretization-Based Kinematic Analysis Method to Seismic Stability of Geosynthetic-Reinforced Slopes Involving Differing Earthquake Approaches. International Journal of Geomechanics, 20(7), 06020010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001660
  • Safardoost Siahmazgi, A., Fathipour, H., Jamshidi Chenari, R., Veiskarami, M., & Payan, M. (2021). Evaluation of the pseudo-dynamic bearing capacity of surface footings on cohesionless soils using finite element lower bound limit analysis. Geomechanics and Geoengineering, 17(3), 765–777. https://doi.org/10.1080/17486025.2021.1889686
  • Shi, K.,Wu, X.,Liu, Z., &Dai, S. (2019). Coupled calculation model for anchoring force loss in a slope reinforced by a frame beam and anchor cables. Engineering Geology, 260(3)105245.
  • Steedman, R. S., & Zeng, X. (1990). The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Géotechnique, 40(1), 103–112. https://doi.org/10.1680/geot.1990.40.1.103
  • Trandafir, A. C., Kamai, T., & Sidle, R. C. (2009). Earthquake-induced displacements of gravity retaining walls and anchor-reinforced slopes. Soil Dynamics and Earthquake Engineering, 29(3), 428–437. https://doi.org/10.1016/j.soildyn.2008.04.005
  • Ukritchon, B., Yoang, S., & Keawsawasvong, S. (2019). Three-dimensional stability analysis of the collapse pressure on flexible pavements over rectangular trapdoors. Transportation Geotechnics, 21, 100277. https://doi.org/10.1016/j.trgeo.2019.100277
  • Xu, M., Tang, Y., Liu, X., Yang, H., & Luo, B. (2018). A shaking table model test on a rock slope anchored with adaptive anchor cables. International Journal of Rock Mechanics and Mining Sciences, 112, 201–208. https://doi.org/10.1016/j.ijrmms.2018.10.021
  • Yan, M., Xia, Y., Liu, T., & Bowa, V. M. (2019). Limit analysis under seismic conditions of a slope reinforced with prestressed anchor cables. Computers and Geotechnics, 108, 226–233. https://doi.org/10.1016/j.compgeo.2018.12.027
  • Yang, G., Zhong, Z., Zhang, Y., & Fu, X. (2015). Optimal design of anchor cables for slope reinforcement based on stress and displacement fields. Journal of Rock Mechanics and Geotechnical Engineering, 7(4), 411–420. https://doi.org/10.1016/j.jrmge.2015.04.004
  • Ye, S., Fang, G., & Zhu, Y. (2019). Model establishment and response analysis of slope reinforced by frame with prestressed anchors under seismic considering the prestress. Soil Dynamics and Earthquake Engineering, 122, 228–234. https://doi.org/10.1016/j.soildyn.2019.03.034
  • Zhang, J., Li, M., Yi, J., & Liu, Z. (2021). Investigation on the Stability of Fissured Slopes Reinforced with Anchor Cables under Seismic Action. Mathematical Problems in Engineering, 2021, 1–14. https://doi.org/10.1155/2021/9262138
  • Zhang, Z. L., & Yang, X. L. (2021). Seismic stability analysis of slopes with cracks in unsaturated soils using pseudo-dynamic approach. Transportation Geotechnics, 29, 100583. https://doi.org/10.1016/j.trgeo.2021.100583
  • Zhao, L. H., Luo, Q., Li, L., & Yang, F. (2013). Energy analysis method for slopes reinforcing with prestressed anchor cables based on minimum energy principle of instability state. Rock & Soil Mechanics, 34(2), 426–432.
  • Zhou, J. W., Lu, P. Y., & Hao, M.-H. (2015). Geomatics, Natural Hazards and Risk.
  • Zhu, D. Y., Lee, C. F., Chan, D. H., & Jiang, H. D. (2005). Evaluation of the stability of anchor-reinforced slopes. Canadian Geotechnical Journal, 42(5), 1342–1349. https://doi.org/10.1139/t05-060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.