42
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A general model for the small-strain stiffness of saturated residual soils: back analysis of a database and case study

, , , , , & show all
Pages 2099-2115 | Received 06 Apr 2023, Accepted 28 Nov 2023, Published online: 21 Dec 2023

References

  • AFNOR. (1992). Nf p94-057-sols: reconnaissance et essais – analyse granulométrique des sols - méthode par sédimentation. Standard, Groupe AFNOR.
  • AFNOR. (1995). Xp p94-041-sols: reconnaissance et essais. identification granulométrique. méthode de tamisage par voie humide. Standard, Groupe AFNOR.
  • AFNOR. (2014). Sols: reconnaissance et essais – détermination des références de compactage d’un matériau - essai proctor normal – essai proctor modifié. Standard, Groupe AFNOR.
  • ASTM. (2013). D4015-07-standard test methods for modulus and damping of soils by resonant-column method. ASTM International, West Conshohocken, PA.
  • Barros, J. (1997). Dynamic shear modulus of tropical soils [Ph. D. thesis]. Polytechnic School of Sao Paulo University, Sao Paulo, Brazil.
  • Bernardes, H. C., Sales, R. R., Machado, A. J., da Cruz Junior, R. P., da Cunha, R. R., Angelim, J. F., & Rodríguez Rebolledo, M. M. (2022). Coupling hardening soil model and Ménard pressuremeter tests to predict pile behavior. European Journal of Environmental and Civil Engineering, 26(11), 5221–5240.
  • Blight, G., & Leong, E. (2012). Mechanics of residual soils. CRC Press.
  • Borden, R. H., Shao, L., & Gupta, A. (1996). Dynamic properties of piedmont residual soils. Journal of Geotechnical Engineering, 122(10), 813–821. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(813)
  • Bui, M., Clayton, C., & Priest, J. (2010). The universal void ratio function for small strain shear modulus. In Proceedings of the 5th International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Missouri University of Science and Technology, 29.
  • Carlton, B. D., & Pestana, J. M. (2016). A unified model for estimating the in-situ small strain shear modulus of clays, silts, sands, and gravels. Soil Dynamics and Earthquake Engineering, 88, 345–355. https://doi.org/10.1016/j.soildyn.2016.01.019
  • Chiu, C., & Ng, C. W. (2014). Relationships between chemical weathering indices and physical and mechanical properties of decomposed granite. Engineering Geology, 179, 76–89. https://doi.org/10.1016/j.enggeo.2014.06.021
  • Clayton, C. (2011). Stiffness at small strain: Research and practice. Géotechnique, 61(1), 5–37. https://doi.org/10.1680/geot.2011.61.1.5
  • Ferreira, F., Vieira, C., Lopes, M., & Carlos, D. (2016). Experimental investigation on the pullout behaviour of geosynthetics embedded in a granite residual soil. European Journal of Environmental and Civil Engineering, 20(9), 1147–1180. https://doi.org/10.1080/19648189.2015.1090927
  • Ferreira, P., & Bica, A. (2006). Problems in identifying the effects of structure and critical state in a soil with a transitional behaviour. Géotechnique, 56(7), 445–454. https://doi.org/10.1680/geot.56.7.445
  • Fookes, P. G. (1997). Tropical residual soils. A Geological Society engineering group working party revised report. The Geological Society.
  • Futai, M. M., Almeida, M. S. S., & Lacerda, W. A. (2004). Yield, strength, and critical state behavior of a tropical saturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 130(11), 1169–1179. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:11(1169)
  • Giacheti, H. (1991). Experimental study of dynamical properties of some tropical soils in Sao Polo state. [Ph. D. thesis], School of Engineering at the University of Sao Paulo, Sao Paulo, Brazil.
  • Hardin, B. (1978, 06). The nature of stress-strain behavior for soils. Proceedings of the geotechnical division specialty conference on earthquake engineering and soil dynamics, ASCE, Pasadena (pp. 3–90).
  • Hardin, B., & Black, W. (1968). Vibration modulus of normally consolidated clays. Journal of the Soil Mechanics and Foundations Division, 94(2), 353–369. https://doi.org/10.1061/JSFEAQ.0001100
  • Hardin, B., & Black, W. (1969). Closure to: Vibration modulus of normally consolidated clays. Journal of the Soil Mechanics and Foundations Division, 95(6), 1531–1537. https://doi.org/10.1061/JSFEAQ.0001364
  • Hardin, B., & Drnevich, V. (1972). Shear modulus and damping in soils: Design equations and curves. Journal of the Soil Mechanics and Foundations Division, 98(7), 667–692. https://doi.org/10.1061/JSFEAQ.0001760
  • Hardin, B. O., & Blandford, G. E. (1989). Elasticity of particulate materials. Journal of Geotechnical Engineering, 115(6), 788–805. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:6(788)
  • Hicher, P.-Y. (1996). Elastic properties of soils. Journal of Geotechnical Engineering, 122(8), 641–648. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(641)
  • Houlsby, G., & Wroth, C. (1991). The variation of shear modulus of a clay with pressure and overconsolidation ratio. Soils and Foundations, 31(3), 138–143. https://doi.org/10.3208/sandf1972.31.3_138
  • Hoyos, L., & Macari, E. (1999). Influence of in situ factors on dynamic response of piedmont residual soils. Journal of Geotechnical and Geoenvironmental Engineering, 125(4), 271–279. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(271)
  • Jamiolkowski, M., Lancellotta, R., & Lo Presti, D. C. F. (1994). Remarks on the stiffness at small strains of six italian clays. In T. M. S. Shibuya & S. Miura (Eds.), Prefailure behavior of geomaterials (Vol. 2, pp. 817–854). Balkema.
  • Kagawa, T. (1992). Moduli and damping factors of soft marine clays. Journal of Geotechnical Engineering, 118(9), 1360–1375. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1360)
  • Kallioglou, P., Tika, T., & Pitilakis, K. (2008). Shear modulus and damping ratio of cohesive soils. Journal of Earthquake Engineering, 12(6), 879–913. https://doi.org/10.1080/13632460801888525
  • Kawaguchi, T., & Tanaka, H. (2008). Formulation of Gmax from reconstituted clayey soils and its application to Gmax measured in the field. Soils and Foundations, 48(6), 821–831. https://doi.org/10.3208/sandf.48.821
  • Leung, E., Pappin, J., & Koo, R. (2010). Determination of small strain modulus and degradation for in-situ weathered rock and old alluvium deposits. In Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Missouri University of Science and Technology, 8..
  • Liu, X., Zhang, X., Kong, L., Li, X., & Wang, G. (2021). Effect of cementation on the small-strain stiffness of granite residual soil. Soils and Foundations, 61(2), 520–532. https://doi.org/10.1016/j.sandf.2021.02.001
  • Liu, X., Zhang, X., Kong, L., Wang, G., & Li, C. (2023). Multiscale structural characterizations of anisotropic natural granite residual soil. Canadian Geotechnical Journal, 60(9), 1383–1400. https://doi.org/10.1139/cgj-2022-0188
  • Liu, X., Zhang, X., Kong, L., Wang, G., & Liu, H. (2022). Formation mechanism of collapsing gully in southern china and the relationship with granite residual soil: A geotechnical perspective. Catena, 210, 105890. https://doi.org/10.1016/j.catena.2021.105890
  • Macari, E. J., & Hoyos, L. (1996). Effect of degree of weathering on dynamic properties of residual soils. Journal of Geotechnical Engineering, 122(12), 988–997. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:12(988)
  • Marcuson, W. Fand., & Wahls, H. E. (1972). Time effects on dynamic shear modulus of clays. Journal of the Soil Mechanics and Foundations Division, 98(12), 1359–1373. https://doi.org/10.1061/JSFEAQ.0001819
  • Mouali, L. (2021). Experimental and numerical study hydromechanical behavior tropical residual soils: application to seismic modeling of embankment dam in the French West Indies [Ph. D. thesis]. Aix-en-Provence.
  • Mouali, L., Veylon, G., Dias, D., Peyras, L., Carvajal, C., Duriez, J., & Antoinet, E. (2023). Dynamic properties of a compacted residual soil from the west indies. Geotechnics, 3(2), 254–277. https://doi.org/10.3390/geotechnics3020015
  • Ng, C., Bentil, O., & Zhou, C. (2021). Small strain shear modulus and damping ratio of two unsaturated lateritic sandy clays. Canadian Geotechnical Journal, 58(9), 1426–1435. https://doi.org/10.1139/cgj-2019-0460
  • Ng, C. W., Leung, E. H., & Lau, C. K. (2004). Inherent anisotropic stiffness of weathered geomaterial and its influence on ground deformations around deep excavations. Canadian Geotechnical Journal, 41(1), 12–24. https://doi.org/10.1139/t03-066
  • Nicot, F., Xiong, H., Wautier, A., Lerbet, J., & Darve, F. (2017). Force chain collapse as grain column buckling in granular materials. Granular Matter, 19(2), 1–12. https://doi.org/10.1007/s10035-017-0702-0
  • Okur, Dand., & Ansal, A. (2007). Stiffness degradation of natural fine grained soils during cyclic loading. Soil Dynamics and Earthquake Engineering, 27(9), 843–854. https://doi.org/10.1016/j.soildyn.2007.01.005
  • Oztoprak, Sand., & Bolton, M. (2013). Stiffness of sands through a laboratory test database. Géotechnique, 63(1), 54–70. https://doi.org/10.1680/geot.10.P.078
  • Pineda, J., Colmenares, J., & Hoyos, L. (2014). Effect of fabric and weathering intensity on dynamic properties of residual and saprolitic soils via resonant column testing. Geotechnical Testing Journal, 37(5), 20120132. https://doi.org/10.1520/GTJ20120132
  • Pineda, J. A., Hoyos, L. R., & Colmenares, J. E. (2010). Stiffness response of residual and saprolitic soils using resonant column and bender element testing techniques [Paper presentation]. GeoFlorida 2010: Advances in Analysis, Modeling & Design, Orlando, Florida (pp. 783–792).
  • Rampello, S., Viggiani, G. M. B., & Amorosi, A. (1997). Small-strain stiffness of reconstituted clay compressed along constant triaxial effective stress ratio paths. Géotechnique, 47(3), 475–489. https://doi.org/10.1680/geot.1997.47.3.475
  • Rocchi, I., & Coop, M. (2015). The effects of weathering on the physical and mechanical properties of a granitic saprolite. Géotechnique, 65(6), 482–493. https://doi.org/10.1680/geot.14.P.177
  • Senetakis, K., Anastasiadis, A., & Pitilakis, K. (2012). The small-strain shear modulus and damping ratio of quartz and volcanic sands. Geotechnical Testing Journal, 35(6), 20120073. https://doi.org/10.1520/GTJ20120073
  • Shibata, T., & Soelarno, D. (1978). Stress-strain characteristics of clays under cyclic loading. Journal of JSCE, 1978(276), 101–110. https://doi.org/10.2208/jscej1969.1978.276_101
  • Shibuya, S., Hwang, S., & Mitachi, T. (1997). Elastic shear modulus of soft clays from shear wave velocity measurement. Géotechnique, 47(3), 593–601. https://doi.org/10.1680/geot.1997.47.3.593
  • Shibuya, S., & Tanaka, H. (1996). Estimate of elastic shear modulus in holocene soil deposits. Soils and Foundations, 36(4), 45–55. https://doi.org/10.3208/sandf.36.4_45
  • Stokoe, K., & Santamarina, J. (2000). Seismic-wave-based testing in geotechnical engineering [Paper presentation]. Proceedins of the International Conference on Geotechnical and Geological Engineering, GeoEng 2000, Melbourne, Australia.
  • Tordesillas, A., & Muthuswamy, M. (2009). On the modeling of confined buckling of force chains. Journal of the Mechanics and Physics of Solids, 57(4), 706–727. https://doi.org/10.1016/j.jmps.2009.01.005
  • Torres, C. E., & Colmenares, J. E. (2018). Influence of confining stress on the small strain stiffness of a residual soil under k0 conditions. In PanAm Unsaturated Soils 2017, ASCE, Dallas, Texas (pp. 408–419).
  • Vardanega, Pand., & Bolton, M. (2013). Stiffness of clays and silts: Normalizing shear modulus and shear strain. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1575–1589. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000887
  • Viggiani, Gand., & Atkinson, J. (1995). Stiffness of fine grained soil at very small strains. Géotech- Nique, 45(2), 249–265. https://doi.org/10.1680/geot.1995.45.2.249
  • Vucetic, Mand., & Dobry, R. (1987). Dynamic proprieties and sesmic reponse of soft clay deposits. Proceedings of the International Symposium on Geotechnical Engineering of Soft Soils, 2(19), 51–87.
  • Wesley, L. (2010). Geotechnical engineering in residual soils, Wiley.
  • Wibawa, Y. S., Sugiarti, K., & Soebowo, E. (2018). Characteristics and engineering properties of residual soil of volcanic deposits. IOP Conference Series: Earth and Environmental Science, 118(1), 012041. https://doi.org/10.1088/1755-1315/118/1/012041
  • Yoka, B., Morvan, M., & Breul, P. (2022). Study of the volumetric behavior of a residual tropical clay. European Journal of Environmental and Civil Engineering, 26(16), 8212–8228. https://doi.org/10.1080/19648189.2021.2021995
  • Zhang, J., Andrus, R. D., & Juang, C. H. (2005). Normalized shear modulus and material damping ratio relationships. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 453–464. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(453)
  • Zhang, L., Nguyen, N. G. H., Lambert, S., Nicot, F., Prunier, F., & Djeran-Maigre, I. (2017). The role of force chains in granular materials: From statics to dynamics. European Journal of Environmental and Civil Engineering, 21(7–8), 874–895. https://doi.org/10.1080/19648189.2016.1194332
  • Zhang, X., Liu, X., Kong, L., Wang, G., & Chen, C. (2022). Small strain stiffness for granite residual soil: Effect of stress ratio. Canadian Geotechnical Journal, 59(8), 1519–1522. https://doi.org/10.1139/cgj-2021-0308

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.