118
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Stability analysis of shield tunnel face in sandy pebble strata considering the route slope angle

, ORCID Icon, , , , & ORCID Icon show all
Pages 2116-2137 | Received 26 Jun 2023, Accepted 07 Dec 2023, Published online: 16 Jan 2024

References

  • Anagnostou, G. (2012). The contribution of horizontal arching to tunnel-face stability. Geotechnik, 35(1), 34–44. https://doi.org/10.1002/gete.201100024
  • Anagnostou, G., & Kovári, K. (1994). The face stability of slurry-shield-driven tunnels. Tunnelling and Underground Space Technology, 9(2), 165–174. https://doi.org/10.1016/0886-7798(94)90028-0
  • Anagnostou, G., & Kovári, K. (1996a). Face stability conditions with earth-pressure-balanced shields. Tunnelling and Underground Space Technology, 11(2), 165–173. https://doi.org/10.1016/0886-7798(96)00017-X
  • Anagnostou, G., & Kovári, K. (1996b). Face stability in slurry and EPB shield tunnelling. Tunnels & Tunnelling International, 28(12), 27–29.
  • Chambon, P., & Corté, J. (1994). Shallow tunnels in cohesionless soil: Stability of tunnel face. Journal of Geotechnical Engineering, 120(7), 1148–1165. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:7(1148)
  • Chen, W. F. (1975). Limit analysis and soil plasticity. Elsevier.
  • Cheng, C., Chen, Y., Zhao, C. Y., Zhao, W., Han, J. Y., Qi, D. Y., & Li, T. L. (2022). Theoretical analysis of the shield tunnel face stability in dry sandy strata. European Journal of Environmental and Civil Engineering, 27(2), 712–732. https://doi.org/10.1080/19648189.2022.2062616
  • Cheng, C., Ni, P. P., Zhao, W., Jia, P. J., Gao, S., Wang, Z. G., & Deng, C. C. (2021). Face stability analysis of EPB shield tunnel in dense sand stratum considering the evolution of failure pattern. Computers and Geotechnics, 130, 103890. https://doi.org/10.1016/j.compgeo.2020.103890
  • Chen, R. P., Li, J., Kong, L. G., & Tang, L. J. (2013). Experimental study on face instability of shield tunnel in sand. Tunnelling and Underground Space Technology, 33, 12–21. https://doi.org/10.1016/j.tust.2012.08.001
  • Chen, R. P., Tang, L. J., Ling, D. S., & Chen, Y. M. (2011). Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method. Computers and Geotechnics, 38(2), 187–195. https://doi.org/10.1016/j.compgeo.2010.11.003
  • Davis, E. H., Gunn, M. J., Mair, R. J., & Seneviratine, H. N. (1980). The stability of shallow tunnels and underground openings in cohesive material. Géotechnique, 30(4), 397–416. https://doi.org/10.1680/geot.1980.30.4.397
  • Di, Q. G., Li, P. F., Zhang, M. J., & Cui, X. P. (2022). Investigation of progressive settlement of sandy cobble strata for shield tunnels with different burial depths. Engineering Failure Analysis, 141, 106708. https://doi.org/10.1016/j.engfailanal.2022.106708
  • Horn, M. (1961). Horizontal earth pressure on perpendicular tunnel face. Proceedings of the Hungarian National Conference of the Foundation Engineer Industry Budapest Hungary. 7–16.
  • Hou, C. T., Pan, Q. J., Xu, T., Huang, F., & Yang, X. L. (2022). Three-dimensional tunnel face stability considering slurry pressure transfer mechanisms. Tunnelling and Underground Space Technology, 125, 104524. https://doi.org/10.1016/j.tust.2022.104524
  • Huang, M. S., & Song, C. X. (2013). Upper-bound stability analysis of a plane strain heading in non-homogeneous clay. Tunnelling and Underground Space Technology, 38, 213–223. https://doi.org/10.1016/j.tust.2013.07.012
  • Huang, Q., Zou, J. F., & Qian, Z. H. (2019). Face stability analysis for a longitudinally inclined tunnel in anisotropic cohesive soils. Journal of Central South University, 26(7), 1780–1793. https://doi.org/10.1007/s11771-019-4133-4
  • Idinger, G., Aklik, P., Wu, W., & Borja, R. I. (2011). Centrifuge model test on the face stability of shallow tunnel. Acta Geotechnica, 6(2), 105–117. https://doi.org/10.1007/s11440-011-0139-2
  • Kirsch, A. (2010). Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotechnica, 5(1), 43–62. https://doi.org/10.1007/s11440-010-0110-7
  • Leca, E., & Dormieux, L. (1990). Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique, 40(4), 581–606. https://doi.org/10.1680/geot.1990.40.4.581
  • Lee, C. J., Chiang, K. H., & Kuo, C. M. (2004). Ground movement and tunnel stability when tunneling in sandy ground. Journal of the Chinese Institute of Engineers, 27(7), 1021–1032. https://doi.org/10.1080/02533839.2004.9670957
  • Lee, I. M., & Nam, S. W. (2001). The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels. Tunnelling and Underground Space Technology, 16(1), 31–40. https://doi.org/10.1016/S0886-7798(01)00028-1
  • Liang, X., Ye, F., Ouyang, A. H., Han, X., & Qin, X. Z. (2020). Theoretical analyses of the stability of excavation face of shield tunnel in Lanzhou metro crossing beneath the Yellow River. International Journal of Geomechanics, 20(11), 04020200. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001836
  • Li, P. F., Chen, K. Y., Wang, F., & Li, Z. (2019). An upper-bound analytical model of blow-out for a shallow tunnel in sand considering the partial failure within the face. Tunnelling and Underground Space Technology, 91, 102989. https://doi.org/10.1016/j.tust.2019.05.019
  • Liu, X. Y., Wang, F. M., Fang, H. Y., & Yuan, D. J. (2019). Dual-failure-mechanism model for face stability analysis of shield tunneling in sands. Tunnelling and Underground Space Technology, 85, 196–208. https://doi.org/10.1016/j.tust.2018.12.003
  • Li, P. F., Wei, Y. J., Zhang, M. J., Huang, Q. F., & Wang, F. (2022). Influence of non-associated flow rule on passive face instability for shallow shield tunnels. Tunnelling and Underground Space Technology, 119, 104202. https://doi.org/10.1016/j.tust.2021.104202
  • Lu, P., Yuan, D. J., Chen, J., Jin, D. L., Wu, J., & Luo, W. P. (2021). Face stability analysis of slurry shield tunnels in rock-soil interface mixed ground. KSCE Journal of Civil Engineering, 25(6), 2250–2260. https://doi.org/10.1007/s12205-021-1254-8
  • Lv, X. L., Zhou, Y. C., Huang, M. S., & Zeng, S. (2018). Experimental study of the face stability of shield tunnel in sands under seepage condition. Tunnelling and Underground Space Technology, 74, 195–205. https://doi.org/10.1016/j.tust.2018.01.015
  • Mair, R. J. (1980). Centrifugal modelling of tunnel construction in soft clay. University of Cambridge. https://doi.org/10.17863/CAM.31159
  • Mollon, G., Dias, D., & Soubra, A. H. (2011). Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield. International Journal for Numerical and Analytical Methods in Geomechanics, 35(12), 1363–1388. https://doi.org/10.1002/nag.962
  • Murayama, S., Endo, M., Hashiba, T., Yamamoto, K., & Sasaki, H. (1966). Geotechnical aspects for the excavating performance of the shield machines [Paper presentation].The 21st Annual Lecture in Meeting of Japan Society of Civil Engineers 265,.
  • Oblozinsky, P., & Kuwano, J. (2004). Centrifuge experiments on stability of tunnel face. Slovak Journal of Civil Engineering, 3, 23–29.
  • Ouyang, A. H. (2021). Stability analysis of excavation face of weak surrounding rock tunnel and optimization of advance support structure based on soil arch effect Research. Chang’an University.
  • Pan, Q. J., & Dias, D. (2016a). Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach. International Journal of Geomechanics, 16(3), 04015076. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000569
  • Pan, Q. J., & Dias, D. (2016b). The effect of pore water pressure on tunnel-face stability. International Journal for Numerical and Analytical Methods in Geomechanics, 40(15), 2123–2136. https://doi.org/10.1002/nag.2528
  • Pan, Q. J., & Dias, D. (2017). Upper-bound analysis on the face stability of a non-circular tunnel. Tunnelling and Underground Space Technology, 62, 96–102. https://doi.org/10.1016/j.tust.2016.11.010
  • Senent, S., & Jimenez, R. (2015). A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse. Tunnelling and Underground Space Technology, 47, 182–192. https://doi.org/10.1016/j.tust.2014.12.014
  • Song, W. J., & Xiang, Y. Y. (2020). A continuous upper bound limit analysis for the transverse stability of shallow shield tunnelling in undrained clays. European Journal of Environmental and Civil Engineering, 24(3), 401–422. https://doi.org/10.1080/19648189.2019.1598896
  • Ukritchon, B., Yingchaloenkitkhajorn, K., & Keawsawasvong, S. (2017). Three-dimensional undrained tunnel-face stability in clay with a linearly increasing shear strength with depth. Computers and Geotechnics, 88, 146–151. https://doi.org/10.1016/j.compgeo.2017.03.013
  • Vermeer, P. A., Ruse, N., & Marcher, T. (2002). Tunnel heading stability in drained ground. Felsbau, 20(6), 8–18.
  • Wang, T., Wang, R., Xue, F., & Tang, N. B. (2023). Experimental investigation on the effect of volume loss on ground movements induced by tunnelling in sand. KSCE Journal of Civil Engineering, 27(1), 122–134. https://doi.org/10.1007/s12205-022-0342-8
  • Weng, X. L., Sun, Y. F., Yan, B. H., Niu, H. S., Lin, R. A., & Zhou, S. Q. (2020). Centrifuge testing and numerical modeling of tunnel-face stability considering longitudinal slope angle and steady state seepage in soft clay. Tunnelling and Underground Space Technology, 101, 103406. https://doi.org/10.1016/j.tust.2020.103406
  • Wu, L., Zhang, X. D., Zhang, Z. H., & Sun, W. C. (2020). 3D discrete element method modelling of tunnel construction impact on an adjacent tunnel. KSCE Journal of Civil Engineering, 24(2), 657–669. https://doi.org/10.1007/s12205-020-2054-2
  • Ye, F., Liu, C., Liang, X. M., Ouyang, A. H., Lei, P., & Han, X. B. (2022). Analysis of face stability based on incomplete soil arching effect. KSCE Journal of Civil Engineering, 26(4), 1950–1965. https://doi.org/10.1007/s12205-022-1292-x
  • Yu, L., Zhang, D. L., Fang, Q., Cao, L. Q., Zhang, Y., & Xu, T. (2020). Face stability of shallow tunnelling in sandy soil considering unsupported length. Tunnelling and Underground Space Technology, 102, 103445. https://doi.org/10.1016/j.tust.2020.103445
  • Zhang, C. P., Han, K. H., & Zhang, D. L. (2015). Face stability analysis of shallow circular tunnels in cohesive–frictional soils. Tunnelling and Underground Space Technology, 50, 345–357. https://doi.org/10.1016/j.tust.2015.08.007
  • Zhang, D. B., Sun, W. C., Wang, C. Y., & Yu, B. (2021). Reliability analysis of seismic stability of shield tunnel face under multiple correlated failure modes. KSCE Journal of Civil Engineering, 25(8), 3172–3185. https://doi.org/10.1007/s12205-021-2174-3
  • Zhang, Y., Tao, L. J., Zhao, X., Kong, H., Guo, F., & Bian, J. (2022). An analytical model for face stability of shield tunnel in dry cohesionless soils with different buried depth. Computers and Geotechnics, 142, 104565. https://doi.org/10.1016/j.compgeo.2021.104565
  • Zhao, M., Lai, H., & Liu, Y. (2023). A study on the formation mechanism and calculation method of surrounding rock pressure in shallow-buried loess tunnel considering the influence of vertical joints. KSCE Journal of Civil Engineering, 27(4), 1820–1837. https://doi.org/10.1007/s12205-023-1479-9
  • Zhao, L. H., Li, D. J., Li, L., Yang, F., Cheng, X., & Luo, W. (2017). Three-dimensional stability analysis of a longitudinally inclined shallow tunnel face. Computers and Geotechnics, 87, 32–48. https://doi.org/10.1016/j.compgeo.2017.01.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.