91
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Swelling-shrinkage properties of compacted Karal soils from North and Far North Cameroon: a physicochemical and geotechnical approach

, , , &
Pages 2345-2365 | Received 22 Jul 2023, Accepted 30 Jan 2024, Published online: 10 Feb 2024

References

  • Adejumo, T. W., Alhassan, M., & Boiko, I. L. (2012). Physico-mechanical properties of some mayor weak soils in Nigeria. Electronic Journal of Geotechnical Engineering, 12, 2435–2441.
  • Amadi, A. A. (2014). Enhancing durability of quarry fines modified black cotton soil subgrade with cement kiln dust stabilization. Transportation Geotechnics, 1(1), 55–61. https://doi.org/10.1016/j.trgeo.2014.02.002
  • ASTM D2487-93. (1996). Standard classification of soils for engineering purposes (Unified Soil Classification System), American Society for Testing and Materials
  • ASTM D4546-03 (2003) Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils, American Society for Testing and Materials
  • Baana, A. (2020). Lithostabilisation des sols gonflants: cas du Karal de la région de l’Extrême-Nord du Cameroun [PhD thesis of University]. Yaoundé 1, Cameroon.
  • Baana, A., Mamba, M., Danwe, R., & Elime, B. A. (2015). Sand effect on linear shrinkage of swelling clays of the far north region Cameroon. International Journal of Engineering Technology and Scientific Innovation, 1(3), 183–198.
  • Bakaiyang, L. (2014). Contribution à l’entretien des routes revêtues en zone tropicale: cas des régions du Grand-Nord Cameroun, Master thesis in civil engineering, University of Yaounde 1 Cameroon
  • Bakaiyang, L. (2022). Durabilité du traitement des argiles gonflantes de type Karal stabilisées pour des applications en construction routière PhD thesis of University of Yaounde 1, Cameroon.
  • Bakaiyang, L., Madjadoumbaye, J., Boussafir, Y., Szymkiewicz, F., & Duc, M. (2021). Re-use in road construction of a Karal-type clay-rich soil from North Cameroon after a lime/cement mixed treatment using two different limes. Case Studies in Construction Materials, 15, e00626. https://doi.org/10.1016/j.cscm.2021.e0062606
  • Brabant, P., & Gavaud, M. (1985). Les sols et les ressources en terre du Nord-Cameroun (Provinces du Nord et de l’Extrême-Nord). Edition de l’ORSTOM,
  • Brackley, I. J. A. (1983). An empirical equation for the prediction of clay heave. Proceedings of the 7th Asian Regional Conference on Soil Mechanics and Foundation Engineering, 1, 8–14.
  • Building Research Establishment (BRE). (1980). The effect of a roof on a fire within a building. IP, 3-80.
  • Dakshanamurthy, V., & Raman, V. (1973). A simple method of identifying an expansive soil. Soils and Foundations, 13(1), 97–104. https://doi.org/10.3208/sandf1972.13.97
  • Derriche, Z., & Kebaili, M. (1998). Prévision du gonflement des argiles d’In-Aménas. Bulletin des Laboratoires des Ponts et Chaussées, 218, 15–23.
  • Djedid, A., Bekkouche, A., & Aissa Mamoune, S. M. (2001). Identification et prévision du gonflement de quelques sols de la région de Tlemcen (Algérie.). Bulletin des Laboratoires des Ponts et Chaussées, 233, 67–75.
  • Dudal, R. (1965). Sols argileux foncés des régions tropicales et subtropicales. F.A.O.
  • Dudal, R. (1967). Sols argileux foncés des régions tropicales et subtropicales. Coll. FAO.
  • Eberemu, A. O., & Sada, H. (2013). Compressibility characteristics of compacted black cotton soil treated with rice husk ash actors. Nigerian Journal of Technology, 32(3), 507–521.
  • Edil, T. B., & Alanazy, A. S. (2017). Stabilization of black cotton soil with lime and iron ore tailings admixture. Transportation Geotechnics, 10, 85–95.
  • Ekodek, G. E. (1976). Nature et comportement géochimique des formations superficielles gonflantes du Nord-Cameroun. PhD. thesis of University of Grenoble, France.
  • Ferber, V., Auriol, J. C., Cu, Y. J., & Magnan, J. P. (2009). On the swelling potential of compacted high plasticity clays. Engineering Geology, 104(3–4), 200–210. https://doi.org/10.1016/j.enggeo.2008.10.008
  • Gonne, B. (2014). Pression foncière sur les terres argileuses à Karal de l’Extrême-Nord Cameroun: Fondements, manifestations et configuration spatiale. Harmattan Cameroun
  • GTR. (1992). Guide Technique pour la réalisation des remblais et couche de forme. SETRA-LCPC.
  • Guiras-Skandaji, H. (1996). Déformabilité des sols argileux non saturés: Étude expérimentale et application à la modélisation. PhD. thesis of National Polytechnic Institute of Lorraine, France.
  • ISO 17892-3. (2015). Geotechnical investigation and testing-Laboratory testing of soil-Part 3: Determination of particle density. French Association for Standardization (AFNOR), Paris.
  • Kanwar, J. S., & Virmani, S. M. (1986). Management of vertisols for improved crop production in the semi-arid topics: A plan for a technology transfer network in Africa. In First IBSRAM (International Board on Soil Research and Management) Regional Networkshop in Africa on Improved Management of Vertisols under Semi-Arid Conditions.
  • Komine, H., & Ogata, N. (1994). Experimental study on swelling characteristics of compacted bentonite. Canadian Geotechnical Journal, 31(4), 478–490. https://doi.org/10.1139/t94-057
  • Komornik, A., & David, D. (1969). Prediction of swelling pressure of clays. Journal of the Soil Mechanics and Foundations Division, 95(1), 209–226. https://doi.org/10.1061/JSFEAQ.0001218
  • Laroche, C. (1973). Etude des sols pour la route Waza Mlatam sur argile gonflante, Revue Générale des Routes et Aerodromes, France
  • Lautrin, D. (1987). Une procédure rapide d’identification des argiles. Bulletin de Liaison Laboratoire des Ponts et Chaussées.
  • Limaleba, R. B., Ayina, O. L. M., & Madjadoumbaye, J. (2016). Physical and mechanical characterization of a swelling clay: The case of Dabanga Karal in the Far North Region of Cameroon. International Journal of Engineering Research and Technology, 5, 910–913.
  • Livet, M. (1988). Études: Sols argileux gonflants-Site expérimental de Waza-Maltam, Rapport de Synthèse, Cameroun.
  • Magnan, J. P. (2013). Panorama des sols gonflants en géotechnique. Bulletin des Laboratoires des Ponts et Chaussées, 85–103.
  • Magnan, J. P., & Youssefian, G. (1989). Essai au bleu de méthylène et classification géotechnique des sols, Bulletin de Liaison Laboratoire des Ponts et Chaussées, 93–104.
  • Masse, D. (1992). Amélioration du régime hydrique des sols dégradés en vue de leur réhabilitation. Cas des vertisols du Nord-Cameroun. PhD thesis of Institut National Polytechnique de Toulouse, France
  • NF EN ISO 10390. (1994). Soil quality. Determination of pH. French Association for Standardization (AFNOR), Paris.
  • NF EN ISO 17892-12. (2018). Geotechnical investigation and testing-Laboratory testing of soil- Determination of liquid and plastic limit, French Association for Standardization (AFNOR), Paris.
  • NF EN ISO 17892-4. (2018). Geotechnical investigation and testing- Laboratory testing of soil- Determination of particle size distribution, French Association for Standardization (AFNOR), Paris.
  • NF P 94-050. (1995). Soils: Investigation and testing- Determination of moisture content - Oven drying method, French Association for Standardization (AFNOR), Paris.
  • NF P 94-055. (1995). Determination of the weight content of organic matter in a soil – The chemical method, French Association for Standardization (AFNOR), Paris.
  • NF P 94-068. (1998). Measuring of the methylen blue of a soil or a rocky soil by means of the stain test, French Association for Standardization (AFNOR), Paris.
  • NF P11-300. (1992). Earthworks. Classification of materials for use in the construction of embankments and capping layers of road infrastructures, French Association for Standardization (AFNOR), Paris
  • Ngale, E. H., Tchangnwa, N. F., & Touoga, T. B. (2014). Karal clay in the far North Cameroon: Study on behavioural floor structures. International Journal of Engineering Research and Development, 10(11), 29–40.
  • Obeta, IN., Ikeagwuani, C. C., Attama, C. M., & Okafor, J. (2019). Stability and durability of sawdust ash-lime stabilised black cotton soil. Nigerian Journal of Technology, 38(1), 75–80. https://doi.org/10.4314/njt.v38i1.10
  • Oluyemi, B. D., & Ola, S. A. (2015). Stabilization of black cotton soils from north-eastern Nigeria with sodium silicate. International Journal of Scientific Research and Innovative Technology, 2(6), 189–203.
  • O’Neill, M. W., & Ghazzaly, O. I. (1977). Swell potential related to building performance. Journal of the Geotechnical Engineering Division, 103(12), 1363–1379. https://doi.org/10.1061/AJGEB6.0000534
  • Osinubi, K. J., Oyelakin, M. A., & Eberemu, A. O. (2011). Improvement of black cotton soil with ordinary Portland cement – locust bean waste ash blend. Electronic Journal of Geotechnical Engineering, 16, 619–627.
  • Ranganatham & Satyanarayana. (1965). A rational method of predicting swelling potential for compacted expansive clays. Proceedings of the 6th International Conference on Soils Mechanics and Foundation Engineering, Montreal, 92–96.
  • Seed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of swelling potential for compacted clays. Journal of the Soil Mechanics and Foundations Division, 88(3), 53–87. https://doi.org/10.1061/JSFEAQ.0000431
  • Seignobos, C. (1993). Harde et Karal du Nord Cameroun, leur perception par les populations agropastorales du Diamaré, in « Les terres harde: Caractérisation et réhabilitation dans le bassin du Lac Tchad ».
  • Selig, E. T., Johnson, L. D., & Snethen, D. R. (1978). Prediction of potential heave of swelling soils. Geotechnical Testing Journal, 1(3), 117–124. https://doi.org/10.1520/GTJ10382J
  • Tangi, L. B. (2010). Caractérisation et quantification des éléments perturbateurs de prise lors du traitement des sols. PhD thesis of Institut National Polytechnique de Lorraine, France.
  • Temga, J. P., Balo Madi, A. B., Djakba, S. B., Zo’o Zame, P., Angue, M. A., Mache, J. R., Nguetnkam, J. P., & Bitom, L. D. (2018). Lime and sand stabilization of clayey materials from the Logone valley (Lake Chad basin) for their utilisation as building materials. Journal of Building Engineering, 19, 472–479. https://doi.org/10.1016/j.jobe.2018.06.003
  • Temga, J. P., Nguetnkam, J. P., Balo Madi, A., Basga, S. D., & Bitom, D. L. (2015). Morphological, physicochemical, mineralogical and geochemical properties of vertisols used in bricks production in the Logone Valley (Cameroon, Central Africa). International Research Journal of Geology and Mining, 5, 20–30.
  • Temga, J. P., Zo’o Zame, P., Abossolo, M., Balo Madi, A., Nguetnkam, J. P., Bitom, D. L., & Basga, S. D. (2017). Characterization and classification of clayey vertisols of the Logone valley in Cameroon. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engeneering, 397–401.
  • Vijayvergiya, V. N., & Ghazzaly, O. I. (1973). Prediction of swelling potential for naturel clays. Proceedings, 3rd International Conference on Expansive Soils,. Academic Press. 1, 227–236.
  • Williams, A. B., & Donaldson, G. W. (1980). Developments related to building on expansive sols in South Africa: 1973-1980. Proceeding of 4th International Conference on Expansive Soils, 2, 834–844.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.