2,548
Views
9
CrossRef citations to date
0
Altmetric
Articles

Phenotypic differences between Drosophila Alzheimer’s disease models expressing human Aβ42 in the developing eye and brain

, , , , , , & show all
Pages 160-168 | Received 25 Dec 2016, Accepted 17 Mar 2017, Published online: 15 Apr 2017

References

  • Ambegaokar SS, Jackson GR. 2011. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet. 20:4947–4977. doi: 10.1093/hmg/ddr432
  • Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM. 2016. Stabilization of microtubule-unbound Tau via Tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced Tau toxicity. PLoS Genet. 12:e1005917. doi: 10.1371/journal.pgen.1005917
  • Bang SM, Lee S, Jeong H, Hong YK, Lee JH, Hwang S, Suh YS, Lee K, Cho KS. 2016. Effects of sarah/nebula knockdown on Aβ42-induced phenotypes during Drosophila development. Genes Genomics. 38:479–487. doi: 10.1007/s13258-016-0407-5
  • Berridge MJ. 2010. Calcium hypothesis of Alzheimer’s disease. Pflugers Arch. 459:441–449. doi: 10.1007/s00424-009-0736-1
  • Cao W, Song HJ, Gangi T, Kelkar A, Antani I, Garza D, Konsolaki M. 2008. Identification of novel genes that modify phenotypes induced by Alzheimer’s β-amyloid overexpression in Drosophila. Genetics. 178:1457–1471. doi: 10.1534/genetics.107.078394
  • Caricasole A, Copani A, Caruso A, Caraci F, Iacovelli L, Sortino MA, Terstappen GC, Nicoletti F. 2003. The Wnt pathway, cell-cycle activation and β-amyloid: novel therapeutic strategies in Alzheimer’s disease? Trends Pharmacol Sci. 24:233–238. doi: 10.1016/S0165-6147(03)00100-7
  • Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P. 2011. The ER stress factor XBP1s prevents amyloid-β neurotoxicity. Hum Mol Genet. 20:2144–2160. doi: 10.1093/hmg/ddr100
  • Chiang HC, Iijima K, Hakker I, Zhong Y. 2009. Distinctive roles of different β-amyloid 42 aggregates in modulation of synaptic functions. FASEB J. 23:1969–1977. doi: 10.1096/fj.08-121152
  • Chiang HC, Wang L, Xie Z, Yau A, Zhong Y. 2010. PI3 kinase signaling is involved in Aβ-induced memory loss in Drosophila. Proc Natl Acad Sci U S A. 107:7060–7065. doi: 10.1073/pnas.0909314107
  • Chouhan AK, Guo C, Hsieh YC, Ye H, Senturk M, Zuo Z, Li Y, Chatterjee S, Botas J, Jackson GR, et al. 2016. Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathol Commun. 4:62. doi: 10.1186/s40478-016-0333-4
  • Du Yan S, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, et al. 1996. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature. 382:685–691. doi: 10.1038/382685a0
  • Ebenezer PJ, Weidner AM, LeVine H, Markesbery WR, Murphy MP, Zhang L, Dasuri K, Fernandez-Kim SO, Bruce-Keller AJ, Gavilan E, et al. 2010. Neuron specific toxicity of oligomeric amyloid-beta: role for JUN-kinase and oxidative stress. J Alzheimers Dis. 22:839–848. doi: 10.3233/JAD-2010-101161
  • Fernandez-Funez P, Zhang Y, Sanchez-Garcia J, de Mena L, Khare S, Golde TE, Levites Y, Rincon-Limas DE. 2015. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer’s disease. Hum Mol Genet. 24:6093–6105. doi: 10.1093/hmg/ddv321
  • Finelli A, Kelkar A, Song H-J, Yang H, Konsolaki M. 2004. A model for studying Alzheimer’s Aβ42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci. 26:365–375. doi: 10.1016/j.mcn.2004.03.001
  • Francis PT, Palmer AM, Snape M, Wilcock GK. 1999. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatr. 66:137–147. doi: 10.1136/jnnp.66.2.137
  • Gerstner JR, Lenz O, Vanderheyden WM, Chan MT, Pfeiffenberger C, Pack AI. 2016. Amyloid-β induces sleep fragmentation that is rescued by fatty acid binding proteins in Drosophila. J Neurosci Res. [Epub ahead of print] doi:10.1002/jnr.23778.
  • Hardy J, Selkoe DJ. 2002. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 297:353–356. doi: 10.1126/science.1072994
  • Hardy JA, Higgins GA. 1992. Alzheimer's disease: the amyloid cascade hypothesis. Science. 256:184–185. doi: 10.1126/science.1566067
  • Hong YK, Lee S, Park SH, Lee JH, Han SY, Kim ST, Kim Y-K, Jeon S, Koo B-S, Cho KS. 2012. Inhibition of JNK/dFOXO pathway and caspases rescues neurological impairments in Drosophila Alzheimer’s disease model. Biochem Biophys Res Commun. 419:49–53. doi: 10.1016/j.bbrc.2012.01.122
  • Hwang S, Song S, Hong YK, Choi G, Suh YS, Han SY, Lee M, Park SH, Lee JH, Lee S, et al. 2013. Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genet. 9:e1003412. doi: 10.1371/journal.pgen.1003412
  • Iijima-Ando K, Hearn SA, Granger L, Shenton C, Gatt A, Chiang H-C, Hakker I, Zhong Y, Iijima K. 2008. Overexpression of neprilysin reduces Alzheimer amyloid-β42 (Aβ42)-induced neuron loss and intraneuronal Aβ42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem. 283:19066–19076. doi: 10.1074/jbc.M710509200
  • Iijima K, Chiang H-C, Hearn SA, Hakker I, Gatt A, Shenton C, Granger L, Leung A, Iijima-Ando K, Zhong Y. 2008. Aβ42 mutants with different aggregation profiles induce distinct pathologies in Drosophila. PloS One. 3:e1703. doi: 10.1371/journal.pone.0001703
  • Iijima K, Gatt A, Iijima-Ando K. 2010. Tau Ser262 phosphorylation is critical for Aβ42-induced tau toxicity in a transgenic Drosophila model of Alzheimer’s disease. Hum Mol Genet. 19:2947–2957. doi: 10.1093/hmg/ddq200
  • Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y. 2004. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A. 101:6623–6628. doi: 10.1073/pnas.0400895101
  • Jeong H, Han SY, Lee M, Lee S, Shin M, Jeon Y, Lee K, Cho KS. 2015. Roles of Tsp66E and Tsp74F in border cell migration and the maintenance of border cell adhesion in Drosophila. Genes Genomics. 37:559–565. doi: 10.1007/s13258-015-0285-2
  • Lang M, Fan Q, Wang L, Zheng Y, Xiao G, Wang X, Wang W, Zhong Y, B Z. 2013. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Abeta42-induced Alzheimer’s disease-like symptoms. Neurobiol Aging. 34:2604–2612. doi: 10.1016/j.neurobiolaging.2013.05.029
  • Lang M, Wang L, Fan Q, Xiao G, Wang X, Zhong Y, Zhou B. 2012. Genetic inhibition of solute-linked carrier 39 family transporter 1 ameliorates aβ pathology in a Drosophila model of Alzheimer’s disease. PLoS Genet. 8:e1002683. doi: 10.1371/journal.pgen.1002683
  • Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. 2009. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 457:1128–1132. doi: 10.1038/nature07761
  • Lee MJ, Park SH, Han JH, Hong YK, Hwang S, Lee S, Kim D, Han SY, Kim ES, Cho KS. 2011. The effects of hempseed meal intake and linoleic acid on Drosophila models of neurodegenerative diseases and hypercholesterolemia. Mol Cells. 31:337–342. doi: 10.1007/s10059-011-0042-6
  • Lee S, Bang SM, Hong YK, Lee JH, Jeong H, Park SH, Liu QF, Lee IS, Cho KS. 2016. The calcineurin inhibitor sarah (nebula) exacerbates Abeta42 phenotypes in a Drosophila model of Alzheimer’s disease. Dis Model Mech. 9:295–306. doi: 10.1242/dmm.018069
  • Lee S, Bang SM, Lee JW, Cho KS. 2014. Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. Evid Based Complement Alternat Med. eCAM.2014:967462.
  • Lee S, Wang JW, Yu W, Lu B. 2012. Phospho-dependent ubiquitination and degradation of PAR-1 regulates synaptic morphology and tau-mediated Aβ toxicity in Drosophila. Nat Commun. 3:1312. doi: 10.1038/ncomms2278
  • Lin R, Angelin A, Da Settimo F, Martini C, Taliani S, Zhu S, Wallace DC. 2014. Genetic analysis of dTSPO, an outer mitochondrial membrane protein, reveals its functions in apoptosis, longevity, and Aβ42-induced neurodegeneration. Aging Cell. 13:507–518. doi: 10.1111/acel.12200
  • Ling D, Salvaterra PM. 2011. Brain aging and Aβ1–42 neurotoxicity converge via deterioration in autophagy–lysosomal system: a conditional Drosophila model linking Alzheimer’s neurodegeneration with aging. Acta Neuropathol. 121:183–191. doi: 10.1007/s00401-010-0772-0
  • Ling D, Song H-J, Garza D, Neufeld TP, Salvaterra PM. 2009. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS One. 4:e4201. doi: 10.1371/journal.pone.0004201
  • Liu QF, Jeong H, Lee JH, Hong YK, Oh Y, Kim YM, Suh YS, Bang S, Yun HS, Lee K, et al. 2016. Coriandrum sativum suppresses Aβ42-induced ROS increases, glial cell proliferation, and ERK activation. Am J Chin Med. 44:1325–1347. doi: 10.1142/S0192415X16500749
  • Liu QF, Lee JH, Kim Y-M, Lee S, Hong YK, Hwang S, Oh Y, Lee K, Yun HS, Lee IS, et al. 2015. In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease. Biol Pharm Bull. 38:1891–1901. doi: 10.1248/bpb.b15-00459
  • Lüchtenborg AM, Katanaev VL. 2014. Lack of evidence of the interaction of the Aβ peptide with the Wnt signaling cascade in Drosophila models of Alzheimer’s disease. Mol Brain. 7:81.
  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J. 1999. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 155:853–862. doi: 10.1016/S0002-9440(10)65184-X
  • Maccioni RB, Farias G, Morales I, Navarrete L. 2010. The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res. 41:226–231. doi: 10.1016/j.arcmed.2010.03.007
  • Markesbery WR. 1997. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 23:134–147. doi: 10.1016/S0891-5849(96)00629-6
  • Mattson MP. 2004. Pathways towards and away from Alzheimer’s disease. Nature. 430:631–639. doi: 10.1038/nature02621
  • Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, et al. 2000. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell. 101:91–101. doi: 10.1016/S0092-8674(00)80626-1
  • Park SH, Lee S, Hong YK, Hwang S, Lee JH, Bang SM, Kim YK, Koo BS, Lee IS, Cho KS. 2013. Suppressive effects of SuHeXiang Wan on amyloid-β42-induced extracellular signal-regulated kinase hyperactivation and glial cell proliferation in a transgenic Drosophila model of Alzheimer’s disease. Biol Pharm Bull. 36:390–398. doi: 10.1248/bpb.b12-00792
  • Sanokawa-Akakura R, Cao W, Allan K, Patel K, Ganesh A, Heiman G, Burke R, Kemp FW, Bogden JD, Camakaris J, et al. 2010. Control of Alzheimer’s amyloid beta toxicity by the high molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila. PLoS One. 5:e8626. doi: 10.1371/journal.pone.0008626
  • Singh C, Mahoney M. 2011. UAS-APP and APP-based constructs and insertions from Vitruvean. Flybase. Personal communication to Flybase:FBrf0213105.
  • Wang L, Chiang HC, Wu W, Liang B, Xie Z, Yao X, Ma W, Du S, Zhong Y. 2012. Epidermal growth factor receptor is a preferred target for treating amyloid-β-induced memory loss. Proc Natl Acad Sci U S A. 109:16743–16748. doi: 10.1073/pnas.1208011109
  • Yamamoto T, Hirano A. 1986. A comparative study of modified Bielschowsky, Bodian and thioflavin S stains on Alzheimer’s neurofibrillary tangles. Neuropathol Appl Neurobiol. 12:3–9. doi: 10.1111/j.1365-2990.1986.tb00677.x