2,718
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of increased pCO2 in seawater on survival rate of different developmental stages of the harpacticoid copepod Tigriopus japonicus

, , , , & ORCID Icon
Pages 217-222 | Received 10 Feb 2017, Accepted 25 Apr 2017, Published online: 22 May 2017

References

  • Barata C, Medina M, Telfer T, Baird DJ. 2002. Determining demographic effects of cypermethrin in the marine copepod Acartia tonsa: stage-specific short tests versus life-table tests. Arch Environ Contam Toxicol. 43:373–378. doi: 10.1007/s00244-002-1268-2
  • Barka S, Pavillon JF, Amiard JC. 2001. Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis. Comp Biochem Physiol. 128:497–493.
  • Barry JP, Buck KR, Lovera C, Kuhnz L, Whaling PJ. 2005. Utility of deep sea CO2 release experiments the biology of a high-CO2 ocean: effect of hypercapnia on deep sea meiofauna. J Geophys Res. 110:09–12. doi: 10.1029/2004JC002629
  • Cao Z, Mu F, Wei X, Sun Y. 2015. Influence of CO2-induced seawater acidification on the development and lifetime reproduction of Tigriopus japonicus Mori, 1938. J Nat Hist. 49:2813–2826. doi: 10.1080/00222933.2015.1034213
  • Cripps G, Lindeque P, Flynn KJ. 2014. Have we been underestimating the effects of ocean acidification in zooplankton? Glob Change Biol. 20:3377–3385. doi: 10.1111/gcb.12582
  • Dupont S, Thorndyke MC. 2009. Impact of CO2-driven ocean acidification on invertebrates early life-history. What we know, what we need to know and what we can do? Biogeosci Discuss. 6:3109–3131. doi: 10.5194/bgd-6-3109-2009
  • Fabry VJ, Seibel BA, Feely RA, Orr JC. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci. 65:414–432. doi: 10.1093/icesjms/fsn048
  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas JA, Fabry VJ, Millero FJ. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science. 305:362–366. doi: 10.1126/science.1097329
  • Fitzer SC, Caldwell GS, Close AJ, Clare AS, Upstill-Goddard RC, Bentley MG. 2012. Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J Exp Mar Biol Ecol. 418–419:30–36. doi: 10.1016/j.jembe.2012.03.009
  • Forget J, Pavillon JF, Menasria MR, Bocquené G. 1998. Mortality and LC50 for several stages of marine copepod Tigriopve brevicornis (Müller) exposed to the metals arsenic and cadmium and the pesticides atrazine, carbofuran, dichlorvos, and malathion. Ecotoxicol Environ Saf. 40:239–244. doi: 10.1006/eesa.1998.1686
  • Fujita K, Hikami M, Suzuki A, Kuroyanagi A, Sakai K, Kawahata H, Nojiri Y. 2011. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences. 8:2089–2098. doi: 10.5194/bg-8-2089-2011
  • Gattuso JP, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW. 1998. Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change. 18:37–46. doi: 10.1016/S0921-8181(98)00035-6
  • Green AS, Chandler GT, Piegorsch WW. 1996. Life-stage-specific toxicity of sediment-associated chlorpyrifos to a marine, infaunal copepod. Environ Toxicol Chem. 15:1182–1188. doi: 10.1002/etc.5620150725
  • Hildebrandt N, Niehoff B, Sartoris FJ. 2014. Long-term effects of elevated CO2 and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus. Mar Pollut Bull. 80:59–70. doi: 10.1016/j.marpolbul.2014.01.050
  • IPCC. 2007. Summary for policymakers in climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge (UK): University Press.
  • IPCC. 2014. Synthesis report in climate change 2014: contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.
  • Ito T. 1970. The biology of the harpacticoid copepod Tigriopus japonicus Mori. J Fac Sci Hokkaido Univ Ser 6 Zool. 17:474–500.
  • Kim TW, Barry JP. 2016. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification. Ocean Sci J. 51:381–386. doi: 10.1007/s12601-016-0034-8
  • Kim TW, Barry JP, Micheli F. 2013. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences. 10:7255–7262. doi: 10.5194/bg-10-7255-2013
  • Kim TW, Taylor J, Lovera C, Barry JP. 2016. CO2-driven decrease in pH disrupts olfactory behaviour and increases individual variation in deep-sea hermit crabs. ICES J Mar Sci. 73:613–619. doi: 10.1093/icesjms/fsv019
  • Kita J, Kikkawa T, Asai T, Ishimatsu A. 2013. Effects of elevated pCO2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica. Mar Pollut Bull. 73:402–408. doi: 10.1016/j.marpolbul.2013.06.026
  • Kurihara H, Kato S, Ishimatsu A. 2007. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol. 1:91–98. doi: 10.3354/ab00009
  • Kusk K, Wollenberger L. 1999. Fully defined saltwater medium for cultivation of and toxicity testing with marine copepod Acartia tonsa. Environ Toxicol Chem. 18:1564–1567. doi: 10.1002/etc.5620180731
  • Langenbuch M, Pörtner HO. 2004. High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid. Aquat Toxicol. 70:55–61. doi: 10.1016/j.aquatox.2004.07.006
  • Lee WJ. 1991. Efficiency of various microbial foods for Tigriopus japonicus Mori. Bull Korean Fish Soc. 24:117–122.
  • Lee JA, Kim TW. 2016. Effects of potential future CO2 levels in seawater on emerging behaviour and respiration of Manila clams, Venerupis philippinarum. ICES J Mar Sci. doi: 10.1093/icesjms/fsw124
  • Lotufo GR. 1997. Toxicity of sediment-associated PAHs to an estuarine copepod: effect on survival, feeding, reproduction and behavior. Mar Environ Res. 44:149–166. doi: 10.1016/S0141-1136(96)00108-0
  • Mayor DJ, Matthews C, Cook K, Zuur AF, Hay S. 2007. CO2-induced acidification affect hatching success in Calanus finmarchicus. Mar Ecol Prog Ser. 350:91–97. doi: 10.3354/meps07142
  • McAllen R, Taylor A. 2001. The effect of salinity change on the oxygen consumption and swimming activity of the high-shore rock pool copepod Tigriopus brevicornis. J Exp Mar Biol Ecol. 263:227–240. doi: 10.1016/S0022-0981(01)00308-2
  • McAllen R, Taylor AC, Davenport J. 1999. The effects of temperature and oxygen partial pressure on the rate of oxygen consumption of the high-shore rock pool copepod Tigriopus brevicornis. Comp Biochem Physiol. 123:195–202. doi: 10.1016/S1095-6433(99)00050-1
  • Pascal PY, Fleeger JW, Galvez F, Carman KR. 2010. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Mar Pollut Bull. 60:2201–2208. doi: 10.1016/j.marpolbul.2010.08.018
  • Pörtner HO. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser. 373:203–217. doi: 10.3354/meps07768
  • Pörtner HO, Farrell AP. 2008. Ecology: physiology and climate change. Science. 322:690–692. doi: 10.1126/science.1163156
  • Pörtner HO, Langenbuch M, Reipschlager A. 2004. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr. 60:705–718. doi: 10.1007/s10872-004-5763-0
  • Pounds NA, Hutchinson TH, Williams TD, Whiting P, Dinan L. 2002. Assessment of putative endocrine disrupters in an in vivo crustacean assay and an in vitro insect assay. Mar Environ Res. 54:709–713. doi: 10.1016/S0141-1136(02)00113-7
  • Przeslawski R, Zhu Q, Aller R. 2009. Effects of abiotic stressors on infaunal burrowing and associated sediment characteristics. Mar Ecol Prog Ser. 392:33–42. doi: 10.3354/meps08221
  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM. 2000. Reduced calcification of marine plankton in response to increase atmospheric CO2. Nature. 407:364–367. doi: 10.1038/35030078
  • Sung CJ, Kim TW, Park YG, Kang SG, Inaba K, Shiba K, Choi TS, Moon SD, Litvin S, Lee KT, Lee JS. 2014. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2. J Mar Syst. 137:67–73. doi: 10.1016/j.jmarsys.2014.04.013
  • Suwa R, Nojiri Y, Ono T, Shirayama Y. 2013. Effects of low pCO2 conditions on sea urchin larval size. Mar Ecol. 34:443–450. doi: 10.1111/maec.12044
  • Thistle D, Sedlacek L, Carman KR, Fleeger JW, Brewer PG, Barry JP. 2006. Simulated sequestration of industrial carbon dioxide at a deep-sea site: effects on species of harpacticoid copepods. J Exp Mar Biol Ecol. 330:151–158. doi: 10.1016/j.jembe.2005.12.023
  • Weydmann A, Søreide JE, Kwasniewski S, Widdicombe S. 2012. Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. J Exp Mar Biol Ecol. 428:39–42. doi: 10.1016/j.jembe.2012.06.002
  • Widdicombe S, Spicer JI. 2008. Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol. 366:187–197. doi: 10.1016/j.jembe.2008.07.024