1,337
Views
2
CrossRef citations to date
0
Altmetric
MOLECULAR & CELLULAR BIOLOGY

Sumoylation of the histone demethylase KDM4A is required for binding to tumor suppressor p53 in HCT116 colon cancer cell lines

, &
Pages 22-28 | Received 09 Nov 2017, Accepted 07 Jan 2018, Published online: 18 Jan 2018

References

  • Anand R, Marmorstein R. 2007. Structure and mechanism of lysine-specific demethylase enzymes. J Biol Chem. 282:35425–35429. doi: 10.1074/jbc.R700027200
  • Baba A, Ohtake F, Okuno Y, Yokota K, Okada M, Imai Y, Ni M, et al. 2011. PKA-Dependent Regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol. 13:668–675. doi: 10.1038/ncb2228
  • Bueno MTD, Richard S. 2013. SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase. Epigenetics. 8:1162–1175. doi: 10.4161/epi.26112
  • Cheng M-b, Zhang Y, Cao C-y, Zhang W-l, Zhang Y, Shen Y-f. 2014. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock. PLoS Biol. 12. doi: 10.1371/journal.pbio.1002026
  • Cloos PAC, Christensen J, Agger K, Helin K. 2008. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115–1140. doi: 10.1101/gad.1652908
  • Cubeñas-Potts C, Matunis MJ. 2013. SUMO: a multifaceted modifier of chromatin structure and function. Dev Cell. 24:1–12. doi: 10.1016/j.devcel.2012.11.020
  • Guerra-Calderas L, González-Barrios R, Herrera LA, de León DC, Soto-Reyes E. 2015. The role of the histone demethylase KDM4A in cancer. Cancer Genet. 208:215–224. doi: 10.1016/j.cancergen.2014.11.001
  • Hamamoto R, Saloura V, Nakamura Y. 2015. Critical roles of Non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer. 15:110–124. doi: 10.1038/nrc3884
  • Johmura Y, Sun J, Kitagawa K, Nakanishi K, Kuno T, Naiki-Ito A, Sawada Y, et al. 2016. SCFFbxo22-KDM4A targets methylated p53 for degradation and regulates senescence. Nat Commun. 7:10574. doi: 10.1038/ncomms10574
  • Jürgen Dohmen R. 2004. SUMO protein modification. Biochim Biophys Acta. 1695:113–131. doi: 10.1016/j.bbamcr.2004.09.021
  • Kim TD, Shin S, Berry WL, Oh S, Janknecht R. 2012. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem. 113:1368–1376. doi: 10.1002/jcb.24009
  • Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. 2006. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine[thinsp]9 and lysine[thinsp]36. Nature. 442:312–316. doi: 10.1038/nature04853
  • Lamoliatte F, McManus FP, Maarifi G, Chelbi-Alix MK, Thibault P. 2017. Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun. 8:14109. doi: 10.1038/ncomms14109
  • Lee SW, Lee MH, Park JH, Kang SH, Yoo HM, Ka SH, Oh YM, Jeon YJ, Chung CH. 2012. SUMOylation of hnRNP-K Is required for p53-mediated cell-cycle arrest in response to DNA damage. EMBO J. 31:4441–4452. doi: 10.1038/emboj.2012.293
  • Park SH, Yu SE, Chai YG, Jang YK. 2014. CDK2-Dependent phosphorylation of Suv39H1 Is involved in control of heterochromatin replication during cell cycle progression. Nucleic Acids Res. 42:6196–6207. doi: 10.1093/nar/gku263
  • Rotili D, Mai A. 2011. Targeting histone demethylases: A new avenue for the fight against cancer. Genes Cancer. 2:663–679. doi: 10.1177/1947601911417976
  • Salifou K, Ray S, Verrier L, Aguirrebengoa M, Trouche D, Panov KI, Vandromme M. 2016. The histone demethylase JMJD2A/KDM4A links ribosomal RNA transcription to nutrients and growth factors availability. Nat Commun. 7:10174. doi: 10.1038/ncomms10174
  • Sherr CJ, Weber JD. 2000. The ARF/p53 pathway. Curr Opin Genet Dev. 10:94–99. doi: 10.1016/S0959-437X(99)00038-6
  • Shi D, Gu W. 2012. Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer. 3:240–248. doi: 10.1177/1947601912455199
  • Tan M-KM, Lim H-J, Harper JW. 2011. SCFFBXO22 regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell B. 31:3687–3699. doi: 10.1128/MCB.05746-11
  • Toffolo E, Rusconi F, Paganini L, Tortorici M, Pilotto S, Heise C, Verpelli C, et al. 2014. Phosphorylation of neuronal lysine-specific demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2. J Neurochem. 128:603–616. doi: 10.1111/jnc.12457
  • Wagner T, Uhlig KM, Knauer SK, Stauber RH. 2012. Dynamically regulated sumoylation of HDAC 2 controls P 53 deacetylation and restricts apoptosis following genotoxic stress. Mol Cell Biol. 1:284–293.
  • West LE, Gozani dO. 2011. Regulation of p53 function by lysine methylation. Epigenomics. 3:361–369. doi: 10.2217/epi.11.21
  • Wilkinson KA, Henley JM. 2012. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 428:133–145. doi: 10.1042/BJ20100158
  • Yang WS, Campbell M, Chang PC. 2017. SUMO modification of a heterochromatin histone demethylase JMJD2A enables viral gene transactivation and viral replication. PLoS Pathog. 13:1–23.