1,702
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Glucose metabolic reprogramming in autoimmune diseases

, , &
Pages 149-158 | Received 12 Jun 2023, Accepted 04 Jul 2023, Published online: 16 Jul 2023

References

  • Abboud G, Choi S, Kanda N, Zeumer-Spataro L, Roopenian DC, Morel L. 2018. Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis. Front Immunol. 9. doi:10.3389/fimmu.2018.01973.
  • Andrejeva G, Rathmell JC. 2017. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 26(1):49–70. doi:10.1016/j.cmet.2017.06.004.
  • Andreucci E, Margheri F, Peppicelli S, Bianchini F, Ruzzolini J, Laurenzana A, Fibbi G, Bruni C, Bellando-Randone S, Guiducci S, et al. 2021. Glycolysis-derived acidic microenvironment as a driver of endothelial dysfunction in systemic sclerosis. Rheumatology. 60(10):4508–4519. doi:10.1093/rheumatology/keab022.
  • Biniecka M, Canavan M, McGarry T, Gao W, McCormick J, Cregan S, Gallagher L, Smith T, Phelan JJ, Ryan J, et al. 2016. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis. 75(12):2192–2200. doi:10.1136/annrheumdis-2015-208476.
  • Braidy N, Lim CK, Grant R, Brew BJ, Guillemin GJ. 2013. Serum nicotinamide adenine dinucleotide levels through disease course in multiple sclerosis. Brain Res. 1537:267–272. doi:10.1016/j.brainres.2013.08.025.
  • Burrack AL, Martinov T, Fife BT. 2017. T cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front Endocrinol (Lausanne). 8:343. doi:10.3389/fendo.2017.00343.
  • Bustamante MF, Oliveira PG, Garcia-Carbonell R, Croft AP, Smith JM, Serrano RL, Sanchez-Lopez E, Liu X, Kisseleva T, Hay N, et al. 2018. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann Rheum Dis. 77(11):1636–1643. doi:10.1136/annrheumdis-2018-213103.
  • Chang C-H, Curtis JD, Maggi LB, Faubert B, Villarino AV, O’Sullivan D, Huang SC-C, van der Windt GJW, Blagih J, Qiu J, et al. 2013. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 153(6):1239–1251. doi:10.1016/j.cell.2013.05.016.
  • Chang X, Wei C. 2011. Glycolysis and rheumatoid arthritis. Int J Rheum Dis. 14(3):217–222. doi:10.1111/j.1756-185X.2011.01598.x.
  • Chen H, Yang T, Zhu L, Zhao Y. 2015. Cellular metabolism on T-cell development and function. Int Rev Immunol. 34(1):19–33. doi:10.3109/08830185.2014.902452.
  • Chen J, Chernatynskaya AV, Li J-W, Kimbrell MR, Cassidy RJ, Perry DJ, Muir AB, Atkinson MA, Brusko TM, Mathews CE. 2017. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep. 7(1):10835. doi:10.1038/s41598-017-11056-9.
  • Chen W, Zhang J, Zhong W, Liu Y, Lu Y, Zeng Z, Huang H, Wan X, Meng X, Zou F, et al. 2021. Anlotinib inhibits PFKFB3-driven glycolysis in myofibroblasts to reverse pulmonary fibrosis. Front Pharmacol. 12. doi:10.3389/fphar.2021.744826.
  • Chou W-C, Rampanelli E, Li X, Ting JP-Y. 2022. Impact of intracellular innate immune receptors on immunometabolism. Cell Mol Immunol. 19(3):337–351. doi:10.1038/s41423-021-00780-y.
  • De Riccardis L, Ferramosca A, Danieli A, Trianni G, Zara V, De Robertis F, Maffia M. 2016. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients. BBA Clin. 6:131–137. doi:10.1016/j.bbacli.2016.10.004.
  • Dierckx T, Vanherle S, Haidar M, Grajchen E, Mingneau F, Gervois P, Wolfs E, Bylemans D, Voet A, Nguyen T, et al. 2022. Phloretin enhances remyelination by stimulating oligodendrocyte precursor cell differentiation. Proc Natl Acad Sci USA. 119(46):e2120393119. doi:10.1073/pnas.2120393119.
  • Elhai M, Meune C, Boubaya M, Avouac J, Hachulla E, Balbir-Gurman A, Riemekasten G, Airò P, Joven B, Vettori S, et al. 2017. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis. 76(11):1897–1905. doi:10.1136/annrheumdis-2017-211448.
  • Fearon U, Hanlon MM, Floudas A, Veale DJ. 2022. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat Rev Rheumatol. 18(7):398–414. doi:10.1038/s41584-022-00771-x.
  • Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB. 2002. The CD28 signaling pathway regulates glucose metabolism. Immunity. 16(6):769–777. doi:10.1016/S1074-7613(02)00323-0.
  • Ganeshan K, Chawla A. 2014. Metabolic regulation of immune responses. Annu Rev Immunol. 32:609–634. doi:10.1146/annurev-immunol-032713-120236.
  • Garcia-Carbonell R, Divakaruni AS, Lodi A, Vicente-Suarez I, Saha A, Cheroutre H, Boss GR, Tiziani S, Murphy AN, Guma M. 2016. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 68(7):1614–1626. doi:10.1002/art.39608.
  • Gergely P, Jr., Grossman C, Niland B, Puskas F, Neupane H, Allam F, Banki K, Phillips PE, Perl A. 2002. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46(1):175–190. doi:10.1002/1529-0131(200201)46:1<175::AID-ART10015>3.0.CO;2-H.
  • Gergely P, Jr, Niland B, Gonchoroff N, Pullmann R, Jr, Phillips PE, Perl A. 2002. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J Immunol. 169(2):1092–1101. doi:10.4049/jimmunol.169.2.1092.
  • Gerriets VA, Kishton RJ, MO J, Cohen S, Siska PJ, Nichols AG, Warmoes MO, de Cubas AA, MacIver NJ, Locasale JW, et al. 2016. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 17(12):1459–1466. doi:10.1038/ni.3577.
  • Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N. 2003. Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol. 13(4):554–573. doi:10.1111/j.1750-3639.2003.tb00485.x.
  • Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. 2018. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 36(4):316–320. doi:10.1038/nbt.4101.
  • Han H-S, Kang G, Kim JS, Choi BH, Koo S-H. 2016. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 48(3):e218–e218. doi:10.1038/emm.2015.122.
  • Hanlon MM, McGarry T, Marzaioli V, Amaechi S, Song Q, Nagpal S, Veale DJ, Fearon U. 2022. Rheumatoid arthritis macrophages are primed for inflammation and display bioenergetic and functional alterations. Rheumatology. doi:10.1093/rheumatology/keac640.
  • Hanly JG. 2014. Diagnosis and management of neuropsychiatric SLE. Nat Rev Rheumatol. 10(6):338–347. doi:10.1038/nrrheum.2014.15.
  • He D, Mao Q, Jia J, Wang Z, Liu Y, Liu T, Luo B, Zhang Z. 2022. Pentose phosphate pathway regulates tolerogenic apoptotic cell clearance and immune tolerance. Front Immunol. 12. doi:10.3389/fimmu.2021.797091.
  • He L. 2020. Metformin and systemic metabolism. Trends Pharmacol Sci. 41(11):868–881. doi:10.1016/j.tips.2020.09.001.
  • Henderson J, Duffy L, Stratton R, Ford D, O’Reilly S. 2020. Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis. J Cell Mol Med. 24(23):14026–14038. doi:10.1111/jcmm.16013.
  • Henderson J, O’Reilly S. 2021. The emerging role of metabolism in fibrosis. Trends Endocrinol Metab. 32(8):639–653. doi:10.1016/j.tem.2021.05.003.
  • Hochrein SM, Wu H, Eckstein M, Arrigoni L, Herman JS, Schumacher F, Gerecke C, Rosenfeldt M, Grün D, Kleuser B, et al. 2022. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 34(4):516–532.e11. doi:10.1016/j.cmet.2022.02.015.
  • Jung SM, Kim W-U. 2022. Targeted immunotherapy for autoimmune disease. Immune Netw. 22(1):e9. doi:10.4110/in.2022.22.e9.
  • Kaskow BJ, Baecher-Allan C. 2018. Effector T cells in multiple sclerosis. Cold Spring Harb Perspect Med. 8(4):a029025. doi:10.1101/cshperspect.a029025.
  • Kirby L, Jin J, Cardona JG, Smith MD, Martin KA, Wang J, Strasburger H, Herbst L, Alexis M, Karnell J, et al. 2019. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat Commun. 10(1):3887. doi:10.1038/s41467-019-11638-3.
  • Koju N, Qin Z, Sheng R. 2022. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin. 43(8):1889–1904. doi:10.1038/s41401-021-00838-7.
  • Kolan SS, Li G, Wik JA, Malachin G, Guo S, Kolan P, Skålhegg BS. 2020. Cellular metabolism dictates T cell effector function in health and disease. Scand J Immunol. 92(5):e12956. doi:10.1111/sji.12956.
  • Kolliniati O, Ieronymaki E, Vergadi E, Tsatsanis C. 2022. Metabolic regulation of macrophage activation. J Innate Immun. 14(1):51–68. doi:10.1159/000516780.
  • Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, Snyder SH. 2018. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 360(6387):449–453. doi:10.1126/science.aan4665.
  • Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanayake T, Salibi R, Honnons S, Jones C, Isern NG, Hu JZ, et al. 2012. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am J Respir Crit Care Med. 186(8):740–751. doi:10.1164/rccm.201201-0084OC.
  • La Torre D, Seppänen-Laakso T, Larsson HE, Hyötyläinen T, Ivarsson SA, Lernmark A, Oresic M, DiPiS Study Group. 2013. Decreased cord-blood phospholipids in young age-at-onset type 1 diabetes. Diabetes. 62(11):3951–3956. doi:10.2337/db13-0215.
  • Lerner A, Jeremias P, Matthias T. 2015. The world incidence and prevalence of autoimmune diseases is increasing. Int J Celiac Dis. 3(4):151–155. doi:10.12691/ijcd-3-4-8.
  • Li W, Qu G, Choi S, Cornaby C, Titov AA, Kanda N, Teng X, Wang H, Morel L. 2019. Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters. Front Immunol. 10. doi:10.3389/fimmu.2019.00833.
  • Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 22(2):146–153. doi:10.1038/nm.4027.
  • Mahad D, Ziabreva I, Lassmann H, Turnbull D. 2008. Mitochondrial defects in acute multiple sclerosis lesions. Brain. 131(7):1722–1735. doi:10.1093/brain/awn105.
  • Mahmoud DE, Kaabachi W, Sassi N, Tarhouni L, Rekik S, Jemmali S, Sehli H, Kallel-Sellami M, Cheour E, Laadhar L. 2022. The synovial fluid fibroblast-like synoviocyte: a long-neglected piece in the puzzle of rheumatoid arthritis pathogenesis. Front Immunol. 13. doi:10.3389/fimmu.2022.942417.
  • Martins CP, New LA, Connor EC, Previte DM, Cargill KR, Tse IL, Sims- Lucas S, Piganelli JD. 2021. Glycolysis inhibition induces functional and metabolic exhaustion of CD4+ T cells in type 1 diabetes. Front Immunol. 12:669456. doi:10.3389/fimmu.2021.669456.
  • Masoumi M, Mehrabzadeh M, Mahmoudzehi S, Mousavi MJ, Jamalzehi S, Sahebkar A, Karami J. 2020. Role of glucose metabolism in aggressive phenotype of fibroblast-like synoviocytes: latest evidence and therapeutic approaches in rheumatoid arthritis. Int Immunopharmacol. 89:107064. doi:10.1016/j.intimp.2020.107064.
  • Miller FW. 2023. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 80:102266. doi:10.1016/j.coi.2022.102266.
  • Mohammadnezhad L, Shekarkar Azgomi M, La Manna MP, Sireci G, Rizzo C, Badami GD, Tamburini B, Dieli F, Guggino G, Caccamo N. 2022. Metabolic reprogramming of innate immune cells as a possible source of new therapeutic approaches in autoimmunity. Cells. 11(10):1663. doi:10.3390/cells11101663.
  • Nave K-A. 2010. Myelination and the trophic support of long axons. Nat Rev Neurosci. 11(4):275–283. doi:10.1038/nrn2797.
  • Negrotto L, Farez MF, Correale J. 2016. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol. 73(5):520–528. doi:10.1001/jamaneurol.2015.4807.
  • Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, Foerster S, McClain CR, Chalut K, van Wijngaarden P, Franklin RJM. 2019. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell. 25(4):473–485.e8. doi:10.1016/j.stem.2019.08.015.
  • Noyes K, Weinstock-Guttman B. 2013. Impact of diagnosis and early treatment on the course of multiple sclerosis. PubMed. 19(17 Suppl):s321–s331. https://pubmed.ncbi.nlm.nih.gov/24494633.
  • Nygaard G, Firestein GS. 2020. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol. 16(6):316–333. doi:10.1038/s41584-020-0413-5.
  • Okano T, Saegusa J, Nishimura K, Takahashi S, Sendo S, Ueda Y, Morinobu A. 2017. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Sci Rep. 7(1):42412. doi:10.1038/srep42412.
  • Oksuzoglu K, Ozen G, Inanir S, Direskeneli RH. 2015. Flip-flop phenomenon in systemic sclerosis on fluorodeoxyglucose positron emission tomography/computed tomography. Indian J Nucl Med. 30(4):350. doi:10.4103/0972-3919.164018.
  • O’Neill LAJ, Pearce EJ. 2016. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 213(1):15–23. doi:10.1084/jem.20151570.
  • Oresic M, Gopalacharyulu P, Mykkänen J, Lietzen N, Mäkinen M, Nygren H, Simell S, Simell V, Hyöty H, Veijola R, et al. 2013. Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes. 62(9):3268–3274. doi:10.2337/db13-0159.
  • Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM. 2013. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci. 1281(1):16–35. doi:10.1111/j.1749-6632.2012.06826.x.
  • Panday A, Sahoo MK, Osorio D, Batra S. 2015. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 12(1):5–23. doi:10.1038/cmi.2014.89.
  • Park D, Lim G, Yoon S-J, Yi H-S, Choi DW. 2022. The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages. BMB Rep. 55(11):519–527. doi:10.5483/BMBRep.2022.55.11.128.
  • Patel CH, Leone RD, Horton MR, Powell JD. 2019. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov. 18(9):669–688. doi:10.1038/s41573-019-0032-5.
  • Patra KC, Hay N. 2014. The pentose phosphate pathway and cancer. Trends Biochem Sci. 39(8):347–354. doi:10.1016/j.tibs.2014.06.005.
  • Pearce EL, Pearce EJ. 2013. Metabolic pathways in immune cell activation and quiescence. Immunity. 38(4):633–643. doi:10.1016/j.immuni.2013.04.005.
  • Pearce EL, Poffenberger MC, Chang C-H, Jones RG. 2013. Fueling immunity: insights into metabolism and lymphocyte function. Science. 342(6155):1242454. doi:10.1126/science.1242454.
  • Perl A, Gergely P, Banki K. 2004. Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus. Int Rev Immunol. 23(3–4):293–313. doi:10.1080/08830180490452576.
  • Pflueger M, Seppänen-Laakso T, Suortti T, Hyötyläinen T, Achenbach P, Bonifacio E, Orešič M, Ziegler A-G. 2011. Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes. 60(11):2740–2747. doi:10.2337/db10-1652.
  • Previte DM, O’Connor EC, Novak EA, Martins CP, Mollen KP, Piganelli JD. 2017. Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS One. 12(4):e0175549. doi:10.1371/journal.pone.0175549.
  • Quiñonez-Flores CM, González-Chávez SA, Pacheco-Tena C. 2016. Hypoxia and its implications in rheumatoid arthritis. J Biomed Sci. 23(1):62. doi:10.1186/s12929-016-0281-0.
  • Ramos-Martinez JI. 2017. The regulation of the pentose phosphate pathway: remember Krebs. Arch Biochem Biophys. 614:50–52. doi:10.1016/j.abb.2016.12.012.
  • Renaud L, Da Silveira WA, Takamura N, Hardiman G, Feghali-Bostwick C. 2020. Prominence of IL6, IGF, TLR, and bioenergetics pathway perturbation in lung tissues of scleroderma patients with pulmonary fibrosis. Front Immunol. 11. doi:10.3389/fimmu.2020.00383.
  • Rodríguez-Prados J-C, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, Cascante M, Boscá L. 2010. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 185(1):605–614. doi:10.4049/jimmunol.0901698.
  • Rosenblum MD, Remedios KA, Abbas AK. 2015. Mechanisms of human autoimmunity. J Clin Invest. 125(6):2228–2233. doi:10.1172/JCI78088.
  • Schwartz RH. 2012. Historical overview of immunological tolerance. Cold Spring Harb Perspect Biol. 4(4):a006908. doi:10.1101/cshperspect.a006908.
  • Segal BM. 2019. The diversity of encephalitogenic CD4+ T cells in multiple sclerosis and its animal models. J Clin Med. 8(1):120. doi:10.3390/jcm8010120.
  • Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H. 2011. HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 208(7):1367–1376. doi:10.1084/jem.20110278.
  • Shyer JA, Flavell RA, Bailis W. 2020. Metabolic signaling in T cells. Cell Res. 30(8):649–659. doi:10.1038/s41422-020-0379-5.
  • Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K. 2018. Rheumatoid arthritis. Nat Rev Dis Primers. 4(1):1–23. doi:10.1038/nrdp.2018.1.
  • Song G, Lu Q, Fan H, Zhang X, Ge L, Tian R, Wang S, Feng T, Pan J, Feng J, et al. 2019. Inhibition of hexokinases holds potential as treatment strategy for rheumatoid arthritis. Arthritis Res Ther. 21(1):87. doi:10.1186/s13075-019-1865-3.
  • Streeter HB, Wraith DC. 2021. Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases. Curr Opin Immunol. 70:75–81. doi:10.1016/j.coi.2021.03.019.
  • Sysi-Aho M, Ermolov A, Gopalacharyulu PV, Tripathi A, Seppänen-Laakso T, Maukonen J, Mattila I, Ruohonen ST, Vähätalo L, Yetukuri L, et al. 2011. Metabolic regulation in progression to autoimmune diabetes. PLoS Comput Biol. 7(10):e1002257. doi:10.1371/journal.pcbi.1002257.
  • Tavazzi B, Batocchi AP, Amorini AM, Nociti V, D’Urso S, Longo S, Gullotta S, Picardi M, Lazzarino G. 2011. Serum metabolic profile in multiple sclerosis patients. Mult Scler Int. 2011:1–8. doi:10.1155/2011/167156.
  • Tse HM, Milton MJ, Schreiner S, Profozich JL, Trucco M, Piganelli JD. 2007. Disruption of innate-mediated proinflammatory cytokine and reactive oxygen species third signal leads to antigen-specific hyporesponsiveness. J Immunol. 178(2):908–917. doi:10.4049/jimmunol.178.2.908.
  • Tsokos GC. 2011. Systemic lupus erythematosus. N Engl J Med. 365(22):2110–2121. doi:10.1056/NEJMra1100359.
  • Vadrucci M, Castellani M, Benti R. 2016. Active subcutaneous calcinosis demonstrated by fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in a case of limited cutaneous systemic sclerosis. Indian J Nucl Med. 31(2):154. doi:10.4103/0972-3919.178335.
  • Vander Heiden MG, DeBerardinis RJ. 2017. Understanding the intersections between metabolism and cancer biology. Cell. 168(4):657–669. doi:10.1016/j.cell.2016.12.039.
  • Volkmann ER, Andréasson K, Smith V. 2023. Systemic sclerosis. Lancet. 401(10373):304–318. doi:10.1016/S0140-6736(22)01692-0.
  • Wahl D, Petersen B, Warner R, Richardson B, Glick G, Opipari A. 2010. Characterization of the metabolic phenotype of chronically activated lymphocytes. Lupus. 19(13):1492–1501. doi:10.1177/0961203310373109.
  • Wang L, Wang F-S, Gershwin ME. 2015. Human autoimmune diseases: a comprehensive update. J Intern Med. 278(4):369–395. doi:10.1111/joim.12395.
  • Weyand CM, Zeisbrich M, Goronzy JJ. 2017. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Curr Opin Immunol. 46:112–120. doi:10.1016/j.coi.2017.04.010.
  • Woo YD, Jeong D, Chung DH. 2021. Development and functions of alveolar macrophages. Mol Cells. 44(5):292–300. doi:10.14348/molcells.2021.0058.
  • Xiao W, Wang R-S, Handy DE, Loscalzo J. 2018. Nad(H) and NADP(H). Redox couples and cellular energy metabolism. Antioxid Redox Signal. 28(3):251–272. doi:10.1089/ars.2017.7216.
  • Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu R-M, Bernard K, Thannickal VJ, Liu G. 2015. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med. 192(12):1462–1474. doi:10.1164/rccm.201504-0780OC.
  • Xu J, Jiang C, Wang X, Geng M, Peng Y, Guo Y, Wang S, Li X, Tao P, Zhang F, et al. 2020. Upregulated PKM2 in macrophages exacerbates experimental arthritis via STAT1 signaling. J Immunol. 205(1):181–192. doi:10.4049/jimmunol.1901021.
  • Yin Y, Choi S-C, Xu Z, Perry DJ, Seay H, Croker BP, Sobel ES, Brusko TM, Morel L. 2015. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med. 7(274):274ra18–274ra18. doi:10.1126/scitranslmed.aaa0835.
  • Yin Y, Choi S-C, Xu Z, Zeumer L, Kanda N, Croker BP, Morel L. 2016. Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. J Immunol. 196(1):80–90. doi:10.4049/jimmunol.1501537.
  • Young SP, Kapoor SR, Viant MR, Byrne JJ, Filer A, Buckley CD, Kitas GD, Raza K. 2013. The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum. 65(8):2015–2023. doi:10.1002/art.38021.
  • Zhao X, Fu J, Du J, Xu W. 2020. The role of D-3-phosphoglycerate dehydrogenase in cancer. Int J Biol Sci. 16(9):1495–1506. doi:10.7150/ijbs.41051.
  • Zhao Y, Yan X, Li X, Zheng Y, Li S, Chang X. 2016. PGK1, a glucose metabolism enzyme, may play an important role in rheumatoid arthritis. Inflamm Res. 65(10):815–825. doi:10.1007/s00011-016-0965-7.
  • Zorov DB, Juhaszova M, Sollott SJ. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94(3):909–950. doi:10.1152/physrev.00026.2013.
  • Zou Y, Zeng S, Huang M, Qiu Q, Xiao Y, Shi M, Zhan Z, Liang L, Yang X, Xu H. 2017. Inhibition of 6-phosphofructo-2-kinase suppresses fibroblast-like synoviocytes-mediated synovial inflammation and joint destruction in rheumatoid arthritis. Br J Pharmacol. 174(9):893–908. doi:10.1111/bph.13762.