463
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Hippo-YAP/TAZ pathway regulation: the crucial roles of lncRNAs in cancer

, , , &
Pages 309-320 | Received 22 Sep 2023, Accepted 03 Nov 2023, Published online: 21 Nov 2023

References

  • Angus L, Moleirinho S, Herron L, Sinha A, Zhang X, Niestrata M, Dholakia K, Prystowsky MB, Harvey KF, Reynolds PA, et al. 2012. Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene. 31(2):238–250. doi: 10.1038/onc.2011.224.
  • Aragon E, Goerner N, Xi Q, Gomes T, Gao S, Massague J, Macias MJ. 2012. Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-beta pathways. Structure. 20(10):1726–1736. doi: 10.1016/j.str.2012.07.014.
  • Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR. 2012. Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol. 23(7):770–784. doi: 10.1016/j.semcdb.2012.07.002.
  • Bhan A, Soleimani M, Mandal SS. 2017. Long noncoding RNA and cancer: a New paradigm. Cancer Res. 77(15):3965–3981. doi: 10.1158/0008-5472.CAN-16-2634.
  • Bitra A, Sistla S, Mariam J, Malvi H, Anand R. 2017. Rassf proteins as modulators of Mst1 kinase activity. Sci Rep. 7:45020. doi: 10.1038/srep45020.
  • Calses PC, Crawford JJ, Lill JR, Dey A. 2019. Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends Cancer. 5(5):297–307. doi: 10.1016/j.trecan.2019.04.001.
  • Chae Y, Roh J, Kim W. 2021. The roles played by long non-coding RNAs in glioma resistance. Int J Mol Sci. 22:13.
  • Chan JJ, Tay Y. 2018. Noncoding RNA:RNA regulatory networks in cancer. Int J Mol Sci. 19:5.
  • Chan LH, Wang W, Yeung W, Deng Y, Yuan P, Mak KK. 2014. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene. 33(40):4857–4866. doi: 10.1038/onc.2013.433.
  • Chen C, Qin L, Xiao MF. 2022. Long noncoding RNA LOC554202 predicts a poor prognosis and correlates with immune infiltration in thyroid cancer. Comput Math Methods Med. 2022:3585626.
  • Chen FB, Wu P, Zhou R, Yang QX, Zhang X, Wang RR, Qi SC, Yang X. 2020. LINC01315 impairs microRNA-211-dependent DLG3 downregulation to inhibit the development of oral squamous cell carcinoma. Front Oncol. 10:556084. doi: 10.3389/fonc.2020.556084.
  • Chen GZ, Zhu HC, Dai WS, Zeng XN, Luo JH, Sun XC. 2017. The mechanisms of radioresistance in esophageal squamous cell carcinoma and current strategies in radiosensitivity. J Thorac Dis. 9(3):849–859. doi: 10.21037/jtd.2017.03.23.
  • Chen K, Wang X, Wei B, Sun R, Wu C, Yang HJ. 2022. LncRNA SNHG6 promotes glycolysis reprogramming in hepatocellular carcinoma by stabilizing the BOP1 protein. Anim Cells Syst. 26(6):369–379. doi: 10.1080/19768354.2022.2134206.
  • Chen W, Wang H, Liu Y, Xu W, Ling C, Li Y, Liu J, Chen M, Zhang Y, Chen B, et al. 2020. Linc-RoR promotes proliferation, migration, and invasion via the Hippo/YAP pathway in pancreatic cancer cells. J Cell Biochem. 121(1):632–641. doi: 10.1002/jcb.29308.
  • Cheng J, Wang S, Dong Y, Yuan Z. 2020. The role and regulatory mechanism of Hippo signaling components in the neuronal system. Front Immunol. 11:281. doi: 10.3389/fimmu.2020.00281.
  • Choi W, Kim J, Park J, Lee DH, Hwang D, Kim JH, Ashktorab H, Smoot D, Kim SY, Choi C, et al. 2018. YAP/TAZ initiates gastric tumorigenesis via upregulation of MYC. Cancer Res. 78(12):3306–3320. doi: 10.1158/0008-5472.CAN-17-3487.
  • Cornils H, Kohler RS, Hergovich A, Hemmings BA. 2011. Downstream of human NDR kinases: impacting on c-myc and p21 protein stability to control cell cycle progression. Cell Cycle. 10(12):1897–1904. doi: 10.4161/cc.10.12.15826.
  • Cunningham R, Hansen CG. 2022. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci. 136(3):197–222. doi: 10.1042/CS20201474.
  • Currey L, Thor S, Piper M. 2021. TEAD family transcription factors in development and disease. Development. 148:12. doi: 10.1242/dev.196675.
  • de Amorim ISS, de Sousa Rodrigues MM, Mencalha AL. 2021. The tumor suppressor role of salvador family WW domain-containing protein 1 (SAV1): one of the key pieces of the tumor puzzle. J Cancer Res Clin Oncol. 147(5):1287–1297. doi: 10.1007/s00432-021-03552-3.
  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22(9):1775–1789. doi: 10.1101/gr.132159.111.
  • Dey A, Varelas X, Guan KL. 2020. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 19(7):480–494. doi: 10.1038/s41573-020-0070-z.
  • Do H, Kim D, Kang J, Son B, Seo D, Youn H, Youn B, Kim W. 2019. TFAP2C increases cell proliferation by downregulating GADD45B and PMAIP1 in non-small cell lung cancer cells. Biol Res. 52(1):35. doi: 10.1186/s40659-019-0244-5.
  • Do H, Kim W. 2018. Roles of oncogenic long non-coding RNAs in cancer development. Genomics Inform. 16(4):e18. doi: 10.5808/GI.2018.16.4.e18.
  • Ehmer U, Sage J. 2016. Control of proliferation and cancer growth by the Hippo signaling pathway. Mol Cancer Res. 14(2):127–140. doi: 10.1158/1541-7786.MCR-15-0305.
  • Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, Glisson B, Trotti A, Ridge JA, Chao C, et al. 2003. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med. 349(22):2091–2098. doi: 10.1056/NEJMoa031317.
  • Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. 2022. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther. 7(1):376. doi: 10.1038/s41392-022-01191-9.
  • Galan JA, Avruch J. 2016. MST1/MST2 protein kinases: regulation and physiologic roles. Biochemistry. 55(39):5507–5519. doi: 10.1021/acs.biochem.6b00763.
  • Gottesman MM. 2002. Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. doi: 10.1146/annurev.med.53.082901.103929.
  • Guan ZB, Cao YS, Li Y, Tong WN, Zhuo AS. 2018. Knockdown of lncRNA GHET1 suppresses cell proliferation, invasion and LATS1/YAP pathway in non small cell lung cancer. Cancer Biomark. 21(3):557–563. doi: 10.3233/CBM-170431.
  • Gundogdu R, Hergovich A. 2019. MOB (Mps one binder) proteins in the Hippo pathway and cancer. Cells. 8:6. doi: 10.3390/cells8060569.
  • Halder G, Johnson RL. 2011. Hippo signaling: growth control and beyond. Development. 138(1):9–22. doi: 10.1242/dev.045500.
  • Han H, Qi R, Zhou JJ, Ta AP, Yang B, Nakaoka HJ, Seo G, Guan KL, Luo R, Wang W. 2018. Regulation of the Hippo pathway by phosphatidic acid-mediated lipid-protein interaction. Mol Cell. 72(2):328–340.e328. doi: 10.1016/j.molcel.2018.08.038.
  • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell. 144(5):646–674. doi: 10.1016/j.cell.2011.02.013.
  • Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. 2021. An overview of signaling pathways regulating YAP/TAZ activity. Cell Mol Life Sci. 78(2):497–512. doi: 10.1007/s00018-020-03579-8.
  • Hergovich A, Hemmings BA. 2009. Mammalian NDR/LATS protein kinases in hippo tumor suppressor signaling. Biofactors. 35(4):338–345. doi: 10.1002/biof.47.
  • Hong AW, Meng Z, Plouffe SW, Lin Z, Zhang M, Guan KL. 2020. Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. Genes Dev. 34(7-8):511–525. doi: 10.1101/gad.333435.119.
  • Hu G, Dong B, Zhang J, Zhai W, Xie T, Huang B, Huang C, Yao X, Zheng J, Che J, et al. 2017. The long noncoding RNA HOTAIR activates the Hippo pathway by directly binding to SAV1 in renal cell carcinoma. Oncotarget. 8(35):58654–58667. doi: 10.18632/oncotarget.17414.
  • Huang Z, Yan Y, Tang P, Cai J, Cao X, Wang Z, Zhang F, Shen B. 2021. TEAD4 as a prognostic marker promotes cell migration and invasion of urinary bladder cancer via EMT. Onco Targets Ther. 14:937–949. doi: 10.2147/OTT.S290425.
  • Huh HD, Kim DH, Jeong HS, Park HW. 2019. Regulation of TEAD transcription factors in cancer biology. Cells. 8:6.
  • Hulvat MC. 2020. Cancer incidence and trends. Surg Clin North Am. 100(3):469–481. doi: 10.1016/j.suc.2020.01.002.
  • Kang J, Kim W, Seo H, Kim E, Son B, Lee S, Park G, Jo S, Moon C, Youn H, et al. 2018. Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis. Sci Rep. 8(1):8394. doi: 10.1038/s41598-018-26762-1.
  • Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, et al. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 316(5830):1484–1488. doi: 10.1126/science.1138341.
  • Kartal-Yandim M, Adan-Gokbulut A, Baran Y. 2016. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol. 36(4):716–726. doi: 10.3109/07388551.2015.1015957.
  • Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, et al. 2018. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 50(12):1705–1715. doi: 10.1038/s41588-018-0252-3.
  • Kim MH, Kim J. 2017. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci. 74(8):1457–1474. doi: 10.1007/s00018-016-2412-x.
  • Kim S, Lim SW, Choi J. 2022. Drug discovery inspired by bioactive small molecules from nature. Anim Cells Syst (Seoul). 26(6):254–265. doi: 10.1080/19768354.2022.2157480.
  • Kim W, Jho EH. 2018. The history and regulatory mechanism of the Hippo pathway. BMB Rep. 51(3):106–118. doi: 10.5483/BMBRep.2018.51.3.022.
  • Kim W, Kang J, Lee S, Youn B. 2017. Effects of traditional oriental medicines as anti-cytotoxic agents in radiotherapy. Oncol Lett. 13(6):4593–4601. doi: 10.3892/ol.2017.6042.
  • Kim W, Lee S, Seo D, Kim D, Kim K, Kim E, Kang J, Seong KM, Youn H, Youn B. 2019. Cellular stress responses in radiotherapy. Cells. 8:9.
  • Kim W, Son B, Lee S, Do H, Youn B. 2018. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev. 37(2-3):213–225. doi: 10.1007/s10555-018-9742-0.
  • Kim W, Youn H, Lee S, Kim E, Kim D, Sub Lee J, Lee JM, Youn B. 2018. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp Mol Med. 50(1):e434. doi: 10.1038/emm.2017.247.
  • Kontomanolis E N, Syllaios A, Schizas D, Kalagasidou S, Pagkalos A, Alatzidou D, Kantari P, Ntounis T, Fasoulakis Z. 2021. Basic principles of molecular biology of cancer cell-molecular cancer indicators. J Buon. 26(5):1723–1734.
  • Lamar JM, Xiao Y, Norton E, Jiang ZG, Gerhard GM, Kooner S, Warren JSA, Hynes RO. 2019. SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. J Biol Chem. 294(7):2302–2317. doi: 10.1074/jbc.RA118.004364.
  • Lee Y, Kim NH, Cho ES, Yang JH, Cha YH, Kang HE, Yun JS, Cho SB, Lee SH, Paclikova P, et al. 2018. Dishevelled has a YAP nuclear export function in a tumor suppressor context-dependent manner. Nat Commun. 9(1):2301. doi: 10.1038/s41467-018-04757-w.
  • Li C, Li X. 2022. Antitumor activity of lncRNA NBAT-1 via inhibition of miR-4504 to target to WWC3 in oxaliplatin-resistant colorectal carcinoma. J Healthc Eng. 2022:9121554.
  • Li D, Hu X, Yu S, Deng S, Yan M, Sun F, Song J, Tang L. 2020. Silence of lncRNA MIAT-mediated inhibition of DLG3 promoter methylation suppresses breast cancer progression via the Hippo signaling pathway. Cell Signal. 73:109697. doi: 10.1016/j.cellsig.2020.109697.
  • Li P, Wang J, Zhi L, Cai F. 2021. Linc00887 suppresses tumorigenesis of cervical cancer through regulating the miR-454-3p/FRMD6-Hippo axis. Cancer Cell Int. 21(1):33. doi: 10.1186/s12935-020-01730-w.
  • Li S, Yu Z, Chen SS, Li F, Lei CY, Chen XX, Bao JM, Luo Y, Lin GZ, Pang SY, et al. 2015. The YAP1 oncogene contributes to bladder cancer cell proliferation and migration by regulating the H19 long noncoding RNA. Urol Oncol. 33(10):427.e1–427.e10.
  • Lin KC, Moroishi T, Meng Z, Jeong HS, Plouffe SW, Sekido Y, Han J, Park HW, Guan KL. 2017. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat Cell Biol. 19(8):996–1002. doi: 10.1038/ncb3581.
  • Liu CY, Chan SW, Guo F, Toloczko A, Cui L, Hong W. 2016. MRTF/SRF dependent transcriptional regulation of TAZ in breast cancer cells. Oncotarget. 7(12):13706–13716. doi: 10.18632/oncotarget.7333.
  • Liu J, Li J, Li P, Jiang Y, Chen H, Wang R, Cao F, Liu P. 2019. DLG5 suppresses breast cancer stem cell-like characteristics to restore tamoxifen sensitivity by inhibiting TAZ expression. J Cell Mol Med. 23(1):512–521. doi: 10.1111/jcmm.13954.
  • Liu J, Li P, Wang R, Li J, Zhang M, Song Z, Liu P. 2019. High expression of DLG3 is associated with decreased survival from breast cancer. Clin Exp Pharmacol Physiol. 46(10):937–943. doi: 10.1111/1440-1681.13132.
  • Liu X, Fu Q, Bian X, Fu Y, Xin J, Liang N, Li S, Zhao Y, Fang L, Li C, et al. 2020. Long Non-coding RNA MAPK8IP1P2 inhibits lymphatic metastasis of thyroid cancer by activating Hippo signaling via sponging miR-146b-3p. Front Oncol. 10:600927. doi: 10.3389/fonc.2020.600927.
  • Liu Y, Li M, Yu H, Piao H. 2020. lncRNA CYTOR promotes tamoxifen resistance in breast cancer cells via sponging miR-125a-5p. Int J Mol Med. 45(2):497–509.
  • Lu X, Wu Y, Cao R, Yu X, Gong J. 2022. CXCL12 secreted by pancreatic stellate cells accelerates gemcitabine resistance of pancreatic cancer by enhancing glycolytic reprogramming. Anim Cells Syst (Seoul). 26(4):148–157. doi: 10.1080/19768354.2022.2091019.
  • Ma S, Meng Z, Chen R, Guan KL. 2019. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 88:577–604. doi: 10.1146/annurev-biochem-013118-111829.
  • Meng Z, Moroishi T, Guan KL. 2016. Mechanisms of Hippo pathway regulation. Genes Dev. 30(1):1–17. doi: 10.1101/gad.274027.115.
  • Mercer TR, Dinger ME, Mattick JS. 2009. Long non-coding RNAs: insights into functions. Nat Rev Genet. 10(3):155–159. doi: 10.1038/nrg2521.
  • Misra JR, Irvine KD. 2018. The Hippo signaling network and its biological functions. Annu Rev Genet. 52:65–87. doi: 10.1146/annurev-genet-120417-031621.
  • Mo JS, Park HW, Guan KL. 2014. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15(6):642–656. doi: 10.15252/embr.201438638.
  • Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S, Koul HK. 2021. Hippo pathway: regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett. 507:112–123. doi: 10.1016/j.canlet.2021.03.006.
  • Nan Y, Luo Q, Wu X, Liu S, Zhao P, Chang W, Zhou A, Liu Z. 2022. DLGAP1-AS2-Mediated phosphatidic acid synthesis activates YAP signaling and confers chemoresistance in squamous cell carcinoma. Cancer Res. 82(16):2887–2903. doi: 10.1158/0008-5472.CAN-22-0717.
  • Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L, Li J. 2019. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 18(1):143. doi: 10.1186/s12943-019-1079-y.
  • Ni W, Zhang Y, Zhan Z, Ye F, Liang Y, Huang J, Chen K, Chen L, Ding Y. 2017. A Novel lncRNA uc.134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. J Hematol Oncol. 10(1):91.
  • Papait R, Kunderfranco P, Stirparo GG, Latronico MV, Condorelli G. 2013. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res. 6(6):876–883. doi: 10.1007/s12265-013-9488-6.
  • Park JH, Pyun WY, Park HW. 2020. Cancer metabolism: phenotype, signaling and therapeutic targets. Cells. 9:10.
  • Piccolo S, Dupont S, Cordenonsi M. 2014. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 94(4):1287–1312. doi: 10.1152/physrev.00005.2014.
  • Plouffe SW, Hong AW, Guan KL. 2015. Disease implications of the Hippo/YAP pathway. Trends Mol Med. 21(4):212–222. doi: 10.1016/j.molmed.2015.01.003.
  • Pocaterra A, Romani P, Dupont S. 2020. YAP/TAZ functions and their regulation at a glance. J Cell Sci. 133:2. doi: 10.1242/jcs.230425.
  • Roh J, Im M, Chae Y, Kang J, Kim W. 2022. The involvement of long Non-coding RNAs in glutamine-metabolic reprogramming and therapeutic resistance in cancer. Int J Mol Sci. 23:23.
  • Roh J, Im M, Kang J, Youn B, Kim W. 2023. Long non-coding RNA in glioma: novel genetic players in temozolomide resistance. Anim Cells Syst (Seoul. 27(1):19–28. doi: 10.1080/19768354.2023.2175497.
  • Roh J, Kim B, Im M, Jang W, Chae Y, Kang J, Youn B, Kim W. 2023. MALAT1-regulated gene expression profiling in lung cancer cell lines. BMC Cancer. 23(1):818. doi: 10.1186/s12885-023-11347-7.
  • Saito A, Nagase T. 2015. Hippo and TGF-beta interplay in the lung field. Am J Physiol Lung Cell Mol Physiol. 309(8):L756–L767. doi: 10.1152/ajplung.00238.2015.
  • Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al. 2018. Oncogenic signaling pathways in The cancer genome atlas. Cell. 173(2):321–337.e310. doi: 10.1016/j.cell.2018.03.035.
  • Seo D, Kim D, Chae Y, Kim W. 2020. The ceRNA network of lncRNA and miRNA in lung cancer. Genomics Inform. 18(4):e36. doi: 10.5808/GI.2020.18.4.e36.
  • Seo D, Kim D, Kim W. 2019. Long non-coding RNA linc00152 acting as a promising oncogene in cancer progression. Genomics Inform. 17(4):e36. doi: 10.5808/GI.2019.17.4.e36.
  • Seo D, Roh J, Chae Y, Kim W. 2021. Gene expression profiling after LINC00472 overexpression in an NSCLC cell line1. Cancer Biomark. 32(2):175–188. doi: 10.3233/CBM-210242.
  • Seo J, Kim J. 2018. Regulation of Hippo signaling by actin remodeling. BMB Rep. 51(3):151–156. doi: 10.5483/BMBRep.2018.51.3.012.
  • Shen M, Su Y, Song S, Liu D, Liu Z, Chen D, Pan Y, Zhang L, Xu X. 2023. SNHG14 facilitates cell proliferation in colorectal cancer through targeting KRAS via Hippo-YAP signaling. Cell Mol Biol (Noisy-le-Grand). 69(3):64–68. doi: 10.14715/cmb/2023.69.3.8.
  • Shen YW, Zhou YD, Chen HZ, Luan X, Zhang WD. 2021. Targeting CTGF in cancer: an emerging therapeutic opportunity. Trends Cancer. 7(6):511–524. doi: 10.1016/j.trecan.2020.12.001.
  • Shih CH, Chuang LL, Tsai MH, Chen LH, Chuang EY, Lu TP, Lai LC. 2021. Hypoxia-Induced MALAT1 promotes the proliferation and migration of breast cancer cells by sponging MiR-3064-5p. Front Oncol. 11:658151. doi: 10.3389/fonc.2021.658151.
  • Siegel RL, Miller KD, Fuchs HE, Jemal A. 2022. Cancer Statistics, 2022. CA Cancer J Clin. 72(1):7–33.
  • Slack FJ, Chinnaiyan AM. 2019. The role of Non-coding RNAs in oncology. Cell. 179(5):1033–1055. doi: 10.1016/j.cell.2019.10.017.
  • Soltani R, Amini M, Mazaheri Moghaddam M, Jebelli A, Ahmadiyan S, Bidar N, Baradaran B, MotieGhader H, Asadi M, Mokhtarzadeh A. 2022. LncRNA DLGAP1-AS2 overexpression associates with gastric tumorigenesis: a promising diagnostic and therapeutic target. Mol Biol Rep. 49(7):6817–6826. doi: 10.1007/s11033-021-07038-w.
  • Son B, Lee S, Youn H, Kim E, Kim W, Youn B. 2017. The role of tumor microenvironment in therapeutic resistance. Oncotarget. 8(3):3933–3945. doi: 10.18632/oncotarget.13907.
  • Sun W, Shi Q, Zhang H, Yang K, Ke Y, Wang Y, Qiao L. 2019. Advances in the techniques and methodologies of cancer gene therapy. Discov Med. 27(146):45–55.
  • Torre LA, Siegel RL, Ward EM, Jemal A. 2016. Global cancer incidence and mortality rates and trends–An update. Cancer Epidemiol Biomarkers Prev. 25(1):16–27. doi: 10.1158/1055-9965.EPI-15-0578.
  • Totaro A, Panciera T, Piccolo S. 2018. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 20(8):888–899. doi: 10.1038/s41556-018-0142-z.
  • Tu J, Tan X, Chen Y, Chen Y, Li Z, Zhang Y, Chen X, Yang H, Chen H, Yu Z. 2022. Growth arrest-specific transcript 5 represses endometrial cancer development by promoting antitumor function of tumor-associated macrophages. Cancer Sci. 113(8):2496–2512. doi: 10.1111/cas.15390.
  • Vaghari-Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S. 2021. Signaling, metabolism, and cancer: an important relationship for therapeutic intervention. J Cell Physiol. 236(8):5512–5532. doi: 10.1002/jcp.30276.
  • Varelas X. 2014. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 141(8):1614–1626. doi: 10.1242/dev.102376.
  • Wang H, Min J, Xu C, Liu Y, Yu Z, Gong A, Xu M. 2023. Hypoxia-elicited exosomes promote the chemoresistance of pancreatic cancer cells by transferring LncROR via hippo signaling. J Cancer. 14(6):1075–1087. doi: 10.7150/jca.81320.
  • Wang J, Huang F, Shi Y, Zhang Q, Xu S, Yao Y, Jiang R. 2021. RP11-323N12.5 promotes the malignancy and immunosuppression of human gastric cancer by increasing YAP1 transcription. Gastric Cancer. 24(1):85–102. doi: 10.1007/s10120-020-01099-9.
  • Wang P, Bai C, Shen S, Jiang C, Deng J, Han D. 2021. MALAT1 promotes malignant pleural mesothelioma by sponging miR-141-3p. Open Med (Wars). 16(1):1653–1667. doi: 10.1515/med-2021-0383.
  • Wang Y, Jia A, Cao Y, Hu X, Wang Y, Yang Q, Bi Y, Liu G. 2020. Hippo kinases MST1/2 regulate immune cell functions in cancer, infection, and autoimmune diseases. Crit Rev Eukaryot Gene Expr. 30(5):427–442. doi: 10.1615/CritRevEukaryotGeneExpr.2020035775.
  • Wang Y, Liu S. 2021. LncRNA GHET1 promotes hypoxia-induced glycolysis, proliferation, and invasion in triple-negative breast cancer through the Hippo/YAP signaling pathway. Front Cell Dev Biol. 9:643515. doi: 10.3389/fcell.2021.643515.
  • Wang Y, Xin D, Zhou L. 2020. LncRNA LINC00152 increases the aggressiveness of human retinoblastoma and enhances carboplatin and Adriamycin resistance by regulating MiR-613/Yes-associated protein 1 (YAP1) axis. Med Sci Monit. 26.
  • Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. 2023. YAP/TAZ: molecular pathway and disease therapy. MedComm. 4(4):e340.
  • Wennmann DO, Schmitz J, Wehr MC, Krahn MP, Koschmal N, Gromnitza S, Schulze U, Weide T, Chekuri A, Skryabin BV, et al. 2014. Evolutionary and molecular facts link the WWC protein family to Hippo signaling. Mol Biol Evol. 31(7):1710–1723. doi: 10.1093/molbev/msu115.
  • Wolf GT, Fisher SG, Hong WK, Hillman R, Spaulding M, Laramore GE, Endicott JW, McClatchey K, Henderson WG. 1991. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. N Engl J Med. 324(24):1685–1690. doi: 10.1056/NEJM199106133242402.
  • Wu Q, Guo J, Liu Y, Zheng Q, Li X, Wu C, Fang D, Chen X, Ma L, Xu P, et al. 2021. YAP drives fate conversion and chemoresistance of small cell lung cancer. Sci Adv. 7(40):eabg1850.
  • Wu X, Wang Y, Zhong W, Cheng H, Tian Z. 2020. The long Non-coding RNA MALAT1 enhances ovarian cancer cell stemness by inhibiting YAP translocation from nucleus to cytoplasm. Med Sci Monit. 26:e922012.
  • Xiao L, Shi XY, Li ZL, Li M, Zhang MM, Yan SJ, Wei ZL. 2021. Downregulation of LINC01508 contributes to cisplatin resistance in ovarian cancer via the regulation of the Hippo-YAP pathway. J Gynecol Oncol. 32(5):e77. doi: 10.3802/jgo.2021.32.e77.
  • Xie SC, Zhang JQ, Jiang XL, Hua YY, Xie SW, Qin YA, Yang YJ. 2020. LncRNA CRNDE facilitates epigenetic suppression of CELF2 and LATS2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma. Cell Death Dis. 11(8):676. doi: 10.1038/s41419-020-02853-8.
  • Yang P, Zhang D, Wang T, Ji J, Jin C, Peng C, Tan Y, Zhou J, Wang L, Feng Y, et al. 2022. CAF-derived exosomal WEE2-AS1 facilitates colorectal cancer progression via promoting degradation of MOB1A to inhibit the Hippo pathway. Cell Death Dis. 13(9):796. doi: 10.1038/s41419-022-05240-7.
  • Yang Y, Liu X, Zheng J, Xue Y, Liu L, Ma J, Wang P, Yang C, Wang D, Shao L, et al. 2020. Interaction of BACH2 with FUS promotes malignant progression of glioma cells via the TSLNC8-miR-10b-5p-WWC3 pathway. Mol Oncol. 14(11):2936–2959. doi: 10.1002/1878-0261.12795.
  • Yao PA, Wu Y, Zhao K, Li Y, Cao J, Xing C. 2022. The feedback loop of ANKHD1/lncRNA MALAT1/YAP1 strengthens the radioresistance of CRC by activating YAP1/AKT signaling. Cell Death Dis. 13(2):103. doi: 10.1038/s41419-022-04554-w.
  • Yao RW, Wang Y, Chen LL. 2019. Cellular functions of long noncoding RNAs. Nat Cell Biol. 21(5):542–551. doi: 10.1038/s41556-019-0311-8.
  • Yeung KT, Yang J. 2017. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 11(1):28–39. doi: 10.1002/1878-0261.12017.
  • Yu M, Shi C, Xu D, Lin X, Ji T, Shi Z, Zhuge X, Zhuo S, Yang Q. 2022. LncRNA ASB16-AS1 drives proliferation, migration, and invasion of colorectal cancer cells through regulating miR-185-5p/TEAD1 axis. Cell Cycle. 21(1):1–11. doi: 10.1080/15384101.2021.1973700.
  • Yue X, Wu WY, Dong M, Guo M. 2021. LncRNA MALAT1 promotes breast cancer progression and doxorubicin resistance via regulating miR-570-3p. Biomed J. 44(6 Suppl 2):S296–S304.
  • Zanconato F, Cordenonsi M, Piccolo S. 2016. YAP/TAZ at the roots of cancer. Cancer Cell. 29(6):783–803. doi: 10.1016/j.ccell.2016.05.005.
  • Zhang Z, Qiu N, Yin J, Zhang J, Liu H, Guo W, Liu M, Liu T, Chen D, Luo K, et al. 2020. SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression. Theranostics. 10(10):4290–4307. doi: 10.7150/thno.41008.
  • Zheng L, Luo C, Yang N, Pei H, Ji M, Shu Y, Zhang Z, Dong S, Wang X, Li X, et al. 2022. Ionizing radiation-induced long noncoding RNA CRYBG3 regulates YAP/TAZ through mechanotransduction. Cell Death Dis. 13(3):209. doi: 10.1038/s41419-022-04650-x.
  • Zhou Y, Jin Q, Chang J, Zhao Z, Sun C. 2022. Correction to: long non-coding RNA ZMIZ1-AS1 promotes osteosarcoma progression by stabilization of ZMIZ1. Cell Biol Toxicol.
  • Zhu B, Finch-Edmondson M, Leong KW, Zhang X VM, Lin QXX, Lee Y, Ng WT, Guo H, Wan Y, et al. 2021. LncRNA SFTA1P mediates positive feedback regulation of the Hippo-YAP/TAZ signaling pathway in non-small cell lung cancer. Cell Death Discov. 7:1.
  • Zhu Y, Bo H, Chen Z, Li J, He D, Xiao M, Xiang L, Jin L, Zhou J, Gong L, et al. 2020. LINC00968 can inhibit the progression of lung adenocarcinoma through the miR-21-5p/SMAD7 signal axis. Aging. 12(21):21904–21922.
  • Zhuang C, Liu Y, Fu S, Yuan C, Luo J, Huang X, Yang W, Xie W, Zhuang C. 2020. Silencing of lncRNA MIR497HG via CRISPR/Cas13d induces bladder cancer progression through promoting the crosstalk between Hippo/Yap and TGF-beta/smad signaling. Front Mol Biosci. 7:616768. doi: 10.3389/fmolb.2020.616768.
  • Zhuang C, Liu Y, Fu S, Yuan C, Luo J, Huang X, Yang W, Xie W, Zhuang C. 2021. Corrigendum: silencing of lncRNA MIR497HG via CRISPR/Cas13d induces bladder cancer progression through promoting the crosstalk between Hippo/Yap and TGF-beta/smad signaling. Front Mol Biosci. 8:664616. doi: 10.3389/fmolb.2021.664616.
  • Zhuo H, Wu C, Tang J, Zhang F, Xu Z, Sun D, Teng Y, Tan Z. 2023. RP11-40C6.2 inactivates Hippo signaling by attenuating YAP1 ubiquitylation in hepatitis B virus-associated hepatocellular carcinoma. J Clin Transl Hepatol. 11(2):323–333.
  • Zinatizadeh MR, Miri SR, Zarandi PK, Chalbatani GM, Raposo C, Mirzaei HR, Akbari ME, Mahmoodzadeh H. 2021. The Hippo tumor suppressor pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis. 8(1):48–60. doi: 10.1016/j.gendis.2019.11.003.