519
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Circadian coordination: understanding interplay between circadian clock and mitochondria

&
Pages 228-236 | Received 04 Mar 2024, Accepted 20 Apr 2024, Published online: 07 May 2024

References

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134:317–328. https://doi.org/10.1016/j.cell.2008.06.050.
  • Asher G, Schibler U. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13:125–137. https://doi.org/10.1016/j.cmet.2011.01.006.
  • Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai J-Y, Bugger H, Zhang D. 2008. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol. 294:H1036–H1047. https://doi.org/10.1152/ajpheart.01291.2007.
  • Cela O, Scrima R, Pazienza V, Merla G, Benegiamo G, Augello B, Fugetto S, Menga M, Rubino R, Fuhr L, et al. 2016. Clock genes-dependent acetylation of complex I sets rhythmic activity of mitochondrial OxPhos. Biochim Biophys Acta Apr. 1863:596–606. https://doi.org/10.1016/j.bbamcr.2015.12.018.
  • Chen L, Qin Y, Liu B, Gao M, Li A, Li X, Gong G. 2022. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. Front Cell Dev Biol. 10:871357. https://doi.org/10.3389/fcell.2022.871357.
  • Couvillion MT, Soto IC, Shipkovenska G, Churchman LS. 2016. Synchronized mitochondrial and cytosolic translation programs. Nature. 533:499–503. https://doi.org/10.1038/nature18015.
  • Edgar RS, Green EW, Zhao Y, Van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 485:459–464. https://doi.org/10.1038/nature11088.
  • Gabriel BM, Altıntaş A, Smith JA, Sardon-Puig L, Zhang X, Basse AL, Laker RC, Gao H, Liu Z, Dollet L. 2021. Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle. Sci Adv. 7:eabi9654. https://doi.org/10.1126/sciadv.abi9654.
  • Gamble KL, Berry R, Frank SJ, Young ME. 2014. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 10:466–475. https://doi.org/10.1038/nrendo.2014.78.
  • Gong C, Li C, Qi X, Song Z, Wu J, Hughes ME, Li X. 2015. The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by aging in the mouse liver. Chronobiol Int. 32:1254–1263. https://doi.org/10.3109/07420528.2015.1085388.
  • Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13:251–262. https://doi.org/10.1038/nrm3311.
  • Haynes PR, Pyfrom ES, Li Y, Stein C, Cuddapah VA, Jacobs JA, Yue Z, Sehgal A. 2024. A neuron–glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis. Nat Neurosci [Online ahead of print].
  • Herzog ED. 2007. Neurons and networks in daily rhythms. Nat Rev Neurosci. 8:790–802. https://doi.org/10.1038/nrn2215.
  • Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL, et al. 2015. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 22:709–720. https://doi.org/10.1016/j.cmet.2015.08.006.
  • Kohsaka A, Das P, Hashimoto I, Nakao T, Deguchi Y, Gouraud SS, Waki H, Muragaki Y, Maeda M. 2014. The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice. PLoS One. 9:e112811. https://doi.org/10.1371/journal.pone.0112811.
  • Koike N, Yoo S-H, Huang H-C, Kumar V, Lee C, Kim T-K, Takahashi JS. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 338:349–354. https://doi.org/10.1126/science.1226339.
  • Kondratov RV, Shamanna RK, Kondratova AA, Gorbacheva VY, Antoch MP. 2006. Dual role of the CLOCK/BMAL1 circadian complex in transcriptional regulation. FASEB J. 20:530–532. https://doi.org/10.1096/fj.05-5321fje.
  • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 326:437–440. https://doi.org/10.1126/science.1172156.
  • Liu C, Li S, Liu T, Borjigin J, Lin JD. 2007. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature. 447:477–481. https://doi.org/10.1038/nature05767.
  • Luck S, Thurley K, Thaben PF, Westermark PO. 2014. Rhythmic degradation explains and unifies circadian transcriptome and proteome data. Cell Rep. 9:741–751. https://doi.org/10.1016/j.celrep.2014.09.021.
  • Magnone MC, Langmesser S, Bezdek AC, Tallone T, Rusconi S, Albrecht U. 2015. The mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front Neurol. 5:289. https://doi.org/10.3389/fneur.2014.00289.
  • Manella G, Asher G. 2016. The circadian nature of mitochondrial biology. Front Endocrinol. 7:242800. https://doi.org/10.3389/fendo.2016.00162.
  • Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I, Ladurner AG, Baldi P, Imhof A, Sassone-Corsi P. 2013. Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci U S A. 110:3339–3344. https://doi.org/10.1073/pnas.1217632110.
  • Mauvoisin D, Atger F, Dayon L, Nunez Galindo A, Wang J, Martin E, Da Silva L, Montoliu I, Collino S, Martin FP, et al. 2017. Circadian and feeding rhythms orchestrate the diurnal liver acetylome. Cell Rep. 20:1729–1743. https://doi.org/10.1016/j.celrep.2017.07.065.
  • Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F, Waridel P, Quadroni M, Gachon F, Naef F. 2014. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A. 111:167–172. https://doi.org/10.1073/pnas.1314066111.
  • Mihaylova MM, Shaw RJ. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 13:1016–1023. https://doi.org/10.1038/ncb2329.
  • Milev NB, Reddy AB. 2015. Circadian redox oscillations and metabolism. Trends Endocrinol Metab. 26:430–437. https://doi.org/10.1016/j.tem.2015.05.012.
  • Morioka E, Kasuga Y, Kanda Y, Moritama S, Koizumi H, Yoshikawa T, Miura N, Ikeda M, Higashida H, Holmes TC, et al. 2022. Mitochondrial LETM1 drives ionic and molecular clock rhythms in circadian pacemaker neurons. Cell Rep. 39:110787. https://doi.org/10.1016/j.celrep.2022.110787.
  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 134:329–340. https://doi.org/10.1016/j.cell.2008.07.002.
  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 324:654–657. https://doi.org/10.1126/science.1170803.
  • Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, Nir D, Rousso-Noori L, Kuperman Y, Golik M, et al. 2016. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A. 113:E1673–E1682. https://doi.org/10.1073/pnas.1519650113.
  • O’Neill JS, Reddy AB. 2011. Circadian clocks in human red blood cells. Nature. 469:498–503. https://doi.org/10.1038/nature09702.
  • Pattanayak GK, Lambert G, Bernat K, Rust MJ. 2015. Controlling the cyanobacterial clock by synthetically rewiring metabolism. Cell Rep. 13:2362–2367. https://doi.org/10.1016/j.celrep.2015.11.031.
  • Peek CB, Affinati AH, Ramsey KM, Kuo HY, Yu W, Sena LA, Ilkayeva O, Marcheva B, Kobayashi Y, Omura C, et al. 2013. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science. 342:1243417. https://doi.org/10.1126/science.1243417.
  • Puig LS, Valera-Alberni M, Canto C, Pillon NJ. 2018. Circadian rhythms and mitochondria: connecting the dots. Front Genet. 9:452. https://doi.org/10.3389/fgene.2018.00452.
  • Rackham O, Filipovska A. 2022. Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet. 23:606–623. https://doi.org/10.1038/s41576-022-00480-x.
  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee CH, et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 324:651–654. https://doi.org/10.1126/science.1171641.
  • Ray S, Valekunja UK, Stangherlin A, Howell SA, Snijders AP, Damodaran G, Reddy AB. 2020. Circadian rhythms in the absence of the clock gene Bmal1. Science. 367:800–806. https://doi.org/10.1126/science.aaw7365.
  • Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, et al. 2006. Circadian orchestration of the hepatic proteome. Curr Biol. 16:1107–1115. https://doi.org/10.1016/j.cub.2006.04.026.
  • Reinke H, Asher G. 2019. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 20:227–241. https://doi.org/10.1038/s41580-018-0096-9.
  • Reppert SM, Weaver DR. 2002. Coordination of circadian timing in mammals. Nature. 418:935–941. https://doi.org/10.1038/nature00965.
  • Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. 2011. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9:e1000595. https://doi.org/10.1371/journal.pbio.1000595.
  • Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U, et al. 2018. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 27:657–666.e655. https://doi.org/10.1016/j.cmet.2018.01.011.
  • Scrima R, Cela O, Merla G, Augello B, Rubino R, Quarato G, Fugetto S, Menga M, Fuhr L, Relógio A. 2016. Clock-genes and mitochondrial respiratory activity: evidence of a reciprocal interplay. Biochim Biophys Acta. 1857:1344–1351. https://doi.org/10.1016/j.bbabio.2016.03.035.
  • Stein LR, Imai S-i. 2012. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab. 23:420–428. https://doi.org/10.1016/j.tem.2012.06.005.
  • Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 18:164–179. https://doi.org/10.1038/nrg.2016.150.
  • Ulgherait M, Chen A, McAllister SF, Kim HX, Delventhal R, Wayne CR, Garcia CJ, Recinos Y, Oliva M, Canman JC. 2020. Circadian regulation of mitochondrial uncoupling and lifespan. Nat Commun. 11:1927. https://doi.org/10.1038/s41467-020-15617-x.
  • van Moorsel D, Hansen J, Havekes B, Scheer FA, Jörgensen JA, Hoeks J, Schrauwen-Hinderling VB, Duez H, Lefebvre P, Schaper NC. 2016. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab. 5:635–645. https://doi.org/10.1016/j.molmet.2016.06.012.
  • Westermann B. 2010. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 11:872–884. https://doi.org/10.1038/nrm3013.
  • Xu L, Lin J, Liu Y, Hua B, Cheng Q, Lin C, Yan Z, Wang Y, Sun N, Qian R. 2022. CLOCK regulates Drp1 mRNA stability and mitochondrial homeostasis by interacting with PUF60. Cell Rep. 39:110635. https://doi.org/10.1016/j.celrep.2022.110635.
  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 111:16219–16224. https://doi.org/10.1073/pnas.1408886111.
  • Zhu B, Zhang Q, Pan Y, Mace EM, York B, Antoulas AC, Dacso CC, O’Malley BW. 2017. A cell-autonomous mammalian 12 hr clock coordinates metabolic and stress rhythms. Cell Metab. 25:1305–1319.e9. https://doi.org/10.1016/j.cmet.2017.05.004.