773
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Application of automatic statistical post-processing method for analysis of ultrasonic and digital dermatoscopy images

ORCID Icon, , , &
Article: 1479600 | Received 25 Jan 2018, Accepted 12 May 2018, Published online: 26 Jun 2018

References

  • American Cancer Society. Cancer facts and figure. Atlanta, Georgia: American Cancer Society; 2018.
  • Lens MB, Dawes M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br J Dermatol. 2004;150:1–11.
  • Markovic SN, Erickson LA, Rao RD, et al. Malignant Melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc. 2007;82(3):364–380.
  • Parkin DM, Mesher D, Sasieni P. Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. Br J Cancer. 2011;105:S66–S69.
  • Spitz S. Melanomas of childhood. Am J Pathol. 1948;24:591–609.
  • Yoradjian A, Figueiredo NC, Pinto VM, et al. Spitz nevus and Reed nevus. An Bras Dermatol. 2012;87(3):349-359. ISSN 0365-0596.
  • Pehamberger H, Steiner A, Wolff K. In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J Am Acad Dermatol. 1987;17:571–583.
  • Bahmer FA, Fritsch P, Kreusch J, et al. Diagnostic criteria in epiluminescence microscopy. Consensus meeting of the professional committee of analytic morphology of the society of dermatologic research, 17 November 1989 in Hamburg. Hautarzt. 1990;41:513–514.
  • Argenziano G, Fabbrocini G, Carli P, et al. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol. 1998;134:1563–1570.
  • Stolz W, Riemann A, Cognetta AB, et al. ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur J Dermatol. 1994;4:521–527.
  • Menzies SW, Ingvar C, Crotty KA, et al. Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch Dermatol. 1996;132:1178–1182.
  • Bazi Y, Bruzzone L, Melgani F. Image thresholding based on the EM algorithm and the generalized Gaussian distribution. Pattern Recognit. 2007;40:619–634.
  • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B. 1997;39:1–38.
  • Smith SM, Brady JM. SUSAN – a new approach to low level image processing. Int J Comput Vis. 1997;23(1):45–78.
  • Gao H, Wenbo X, Sun J, et al. Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. EEE Trans Instrum Meas. 2010;59(4):934–946.
  • Everitt BS, Hand DJ. Finite mixture distribution. Chapman and Hall, London: John Wiley; 1981. ISBN 0-387-95457-0.
  • Jordan MI, Xu L. Convergence results for the EM approach to mixtures of expert architectures. Neural Networks. 1995;8:1409–1431.
  • McLachlan GJ, Krishnan T. The EM algorithm and extensions. (NY): John Wiley; 1997. p. 400.
  • Alcon JF, Ciuhu C, Kate W, et al. Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J Sel Top Signal Process. 2009 Feb;3(1):357–362.
  • Ruiz D, Berenguer V, Soriano A, et al. A decision support system for the diagnosis of melanoma: a comparative approach. Expert Syst Appl. 2011;38:15217–15223.
  • Sheha MA, Mabrouk MS, Sharawy A. Artificial neural network method – automatic detection of melanoma skin cancer using texture analysis. Int J Comput Appl. 2012 Mar;42(20):22–26.
  • Jasaitienė D, Valiukevičienė S, Linkevičiūtė G, et al. Principles of high-frequency ultrasonography for investigation of skin pathology. J Eur Acad Dermatol Venereol. 2011;25(4):375–382. Malden: Wiley-Blackwell. ISSN 0926-9959.
  • Kučinskienė V, Samulėnienė DG, Gineikienė A, et al. Preoperative assessment of skin tumor thickness and structure using 14-MHz ultrasound. Medicina. 2014;50(3):150–155. Amsterdam: Elsevier. ISSN 1010-660X.
  • Wong A, Scharcanski J, Fieguth P. Automatic skin lesion segmentation via iterative stochastic region merging. IEEE. 2011;15:929–936.
  • Yan P, Xu Sh, Turkbey  B, et al. Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Trans Biomed Eng. 2010;57:1158–1166.
  • Zh. M, Tavare JMRS. A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE. 2016;20:1–10.
  • Dzung L, Pham Y, Xu C, et al. A survey of current methods in medical image segmentation. Annu Rev Biomed Eng. Technical Report JHU/ECE99-01.1998 Jan 19:1–27.
  • Cavalcanti PG, Scharcanski J, Lopes CBO. Shading attenuation in human skin color images. ISVC. 2010; 6453:1–7.
  • Brun M-A, Formanek F, Yasuda A, et al. Terahertz imaging applied to cancer diagnosis. Phys Med Biol. 2010;55:4615–4623.
  • Dobrescu R, Dobrescu M, Mocanu S, et al. Medical images classification for skin cancer diagnosis based on combined texture. Wseas Trans Biology Biomed. 2010;7:1–10.
  • Sheha MA. Automatic detection of melanoma skin cancer using texture analysis. Int J Comput Appl. 2012;42:22–26.
  • Wang H, Chen X,  Moss RH, et al. Watershed segmentation of dermoscopy images using a watershed technique. Skin Res Technol. 2010;16:378–384.
  • Zhou H, Schaefer G, Celebi ME, et al. Gradient vector flow with mean shift for skin lesion segmentation. Comput Med Imaging Graphics. 2011;35:121–127.
  • Pereyra M, Dobigeon N, Batatia H, et al. Segmentation of skin lesions in 2D and 3D ultrasound images using a spatially coherent generalized Rayleigh mixture model. IEEE Trans Med Imaging. 2012;31:1509–1520.
  • Abbas Q. Melanoma recognition framework based on expert definition of ABCD for dermoscopic images. Skin Res Technol. 2013;19:93–102.
  • Abuzaghleh O, Barkana BD, Faezipour M. Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE. 2015;3:1–12.
  • “Color image segmentation: a state-of-the-art survey.” New Delhi, India: Proc. Indian Nat. Science Academy, India, Vol. 67. 2001 Mar, p. 998–1006. A, Arch Dermatol.
  • Abbas Q, Fondón I, Rashid M. Unsupervised skin lesions border detection via two-dimensional image analysis. Comput Methods Programs Biomed. 2011;104:1–15.
  • Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1998;1(4):321–331.
  • Xu L, Jackowski M, Goshtasby A, et al. Segmentation of skin cancer images. Image Vis Comput. 1999;17:65–74.
  • Sund T, Eilertsen K. An algorithm for fast adaptive binarization with applications in radiotherapy imaging. IEEE Trans Med Imaging. 2003;22:22–28.
  • Celebi ME. Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res Technol. 2013;19:252–258.
  • Solihin Y, Leedham CG. Integral ratio: a new class of global thresholding techniques for handwriting images. IEEE Trans Pattern Anal Mach Intell. 1999;21:761–768.
  • Bhanu B. Automatic target recognition: state of the art survey. IEEE Trans Aerosp Electron Syst. 1986;AES-22:364–379.
  • Bruzzone L, Prieto DF. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sensing. 2000;38:1171–1182.
  • Bruzzone L, Prieto DF. An adaptive and semiparametric and context-based approach to unsupervised change detection in multitemporal remote sensing image. IEEE Trans Image Process. 2002;11:452–466.
  • Rosin PL, Ioannidis E. Evaluation of global image thresholding for change detection. Pattern Recognition Lett. 2003;24:2345–2356.
  • Palevicius P, Ragulskis M, Janusas G, et al. A technique for the reconstruction of a map of continuous curves from interference fringes. Proc SPIE. 2014;9286:1-8.
  • Tan KS, Nor Ashidi Mat Isa. Color image segmentation using histogram thresholding – fuzzy C-means hybrid approach. Pattern Recognit. 2011;44:1–15.
  • Horng MH. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst Appl. 2011;38:13785–13791.
  • Sathya PD, Kayalvizhi R. Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng Appl Artif Intell. 2011;24:595–615.
  • Vala HJ, Baxi A. A review on Otsu image segmentation algorithm. Int J Advanced Res Comput Eng Technol (IJARCET). 2013 Feb;2(2):387-389. ISSN: 2278 – 1323.
  • Barbieri AL, De Arruda GF, Rodrigues FA, et al. An entropy based approach to automatic image segmentation of satellite images. Physica A. 2011;390:512–518.
  • Tang K, Yuan X, Sun T, et al. An improved scheme for minimum cross entropy threshold selection based on genetic algorithm. Knowledge-Based Syst. 2011;24:1131–1138.
  • Tomas R. The nonparametric estimation of multivariate distribution density applying clustering procedures. Vilnius. 2007;1:12–13.
  • Render RA, Walker HF. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 1984;26:195–239.
  • Tsuda K, Akaho S, Asai K. The EM algorithm for kernel matrix completion with auxiliary data. J Machine Learn Res. 2004;4(1):67–81.
  • British Association of Dermatologist Guidelines, 2002. Available from: www.bad.org.uk.
  • Brown FE. Marketing research: a structure for decision making. Reading (MA): Addison Wesley; 1980. ISBN: 0-8442-3443-5.
  • Parasuraman A. Customer-oriented corporate cultures are crucial to services marketing success. J Serv Marketing. 1987;1:139–146.
  • Edgeworth FY. On methods of ascertaining variations in the rate of births, deaths and marriages. J [Royal] Stat Soc. 1985;48:628–649.
  • Wald A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc. 1943;54:426–482.
  • Chernick MR, Murthy VK, Nealy CD. Estimation of error rate for linear discriminant functions by resampling: non-Gaussian populations. Computers & Mathematics with Applications. 1988;15(1):29–37.
  • Lachenbruch PA, Mickey MR. Estimation of error rates in discriminant analysis. Technometrics. 1968;10:1–11.
  • Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann Math Stat. 1956;27:832–837.
  • Agresti A. Categorical data analysis. 2nd ed. New York (NY): John Wiley & Sons; 2002. ISBN: 9780471249689.
  • Allison PD. Logistic regression using the SAS system: theory and application. Cary (NC): SAS Institute Inc; 2001. ISBN 1-58025-352-0.
  • Collett D. Modelling binary data. 2nd ed. London: Chapman & Hall; 2003. ISBN 9781584883241.
  • Cox DR, Snell EJ. The analysis of binary data. 2nd ed. London: Chapman & Hall; 1989. ISBN: 0412306204.
  • Hosmer DW Jr., Lemeshow S. Applied logistic regression. 2nd ed. New York (NY): John Wiley & Sons; 2000. ISBN: 9780471722144.
  • Stokes ME, Davis CS, Koch GG. Categorical data analysis using the SAS system. 2nd ed. Cary (NC): SAS Institute Inc; 2000. ISBN-10: 0471224243.
  • McFadden. Conditional logit analysis of qualitative choice behaviour. In Zaremba P (Ed).: Frontiers in econometrics. New York (NY): Academic Press; 1974. p. 105–142.
  • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27:861–874.
  • Mets CE. ROC methodology in radiologic imaging. Invest Radiol. 1986;21:720–733.
  • Lusted LB. Logical analysis in Roentgen diagnosis. Radiology. 1960;74:178–193.
  • Lusted LB. Introduction to medical decision making. Chicago (IL): Thomas Springfield; 1968. p. 32–61.
  • Lusted LB. Decision-making studies in patient management. New England J Med. 1971;284:416–424.
  • Lusted LB. Signal detectability and medical decision-making. Science. 1971;171:1217–1219.
  • Swets JA Signal detection in medical diagnosis. In: Computer diagnosis and diagnostic methods. Chicago (IL): Thomas Springfeld; 1972. p. 8–28.
  • McNeil BJ, Keeler E, Adelstein SJ. Primer on certain elements of medical decision making. New England J Med. 1975;293:211–215.
  • McNeil BJ, Adelstein SJ. Determining the value of diagnostic and screening tests. J Nucl Med. 1976;17:439–448.
  • Weinstein MC, Fineberg HV. Clinical decision analysis. Saunders, Philadelphia; WB Saunders. 1980. p. 309–330.
  • Griner PF, Mayewski RJ, Mushlin AI, et al. Selection and interpretation of diagnostic tests and procedures: principles and applications. Ann Intern Med. 1981;94:553–592.
  • Robertson EA, Zweig MH, Van Steirtghem AC. Evaluating the clinical efficacy of laboratory tests. Am J Clin Pathol. 1983;79:78–86.
  • Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–1293.
  • Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39:561–577.
  • Wan S, Zhang B. Smooth semiparametric receiver operating characteristic curves for continuous diagnostic tests. Statist Med. 2007;26:2565–2586.
  • Alemayehu D, Zou KH. Applications of ROC analysis in medical research: recent developments and future directions. Acad Radiol. 2012 Dec;19(12):1457–1464.
  • Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115:654–657.
  • Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Statist Med. 2008;27:157–172.
  • Li J. ROC analysis with multiple classes and multiple tests: methodology and its application in microarray studies. Biostatistics. 2008;9, 3:566–576.
  • Ishwaran H, Gatsonis CA. A general class of hierarchical ordinal regression models with applications to correlated ROC analysis. Can J Stat. 2000;28(4):731–750.
  • Goodenough DJ, Rossmann K, Lusted LB. Radiographic applications of signal detection theory. Radiology. 1972;105:199–200.
  • Goodenough DJ, Rossmann K, Lusted LB. Radiographic applications of receiver operating characteristic (ROC) analysis. Radiology. 1974;110:89–95.
  • Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8:283–298.
  • Swets JA. ROC analysis applied to the evaluation of medical imaging techniques. Invest Radiol. 1979;14:109–121.
  • Swets JA, Pickett RM. Evaluation of diagnostic systems: methods from signal detection theory. New York (NY): Academic Press; 1982. p. 253.
  • Metz CE. ROC methodology in radiologic imaging. Invest Radiol. 1986;21:720–733.
  • Metz CE. Some practical issues of experimental design and data analysis in radiological ROC studies. Invest Radiol. 1989;24:234–245.
  • Hanley JA. Receiver operating characteristic (ROC) methodology: the state of art. CRC Crit Rev Diagn Imaging. 1989;29:307–335.
  • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.
  • McNeil BJ, Hanley JA, Funkenstein HH, et al. The use of paired ROC curves in studying the impact of history on radiography interpretation. Radiology. 1983;149:75–77.
  • Duncan JS, Ayache N. Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell. 2000 Jan;22(1):85–106.