1,988
Views
4
CrossRef citations to date
0
Altmetric
Original Article

An approach to revolutionize cataract treatment by enhancing drug probing through intraocular cell line

, &
Article: 1500347 | Received 18 Jan 2018, Accepted 04 Jul 2018, Published online: 26 Jul 2018

References

  • Pillay V, Choonara YE, Du Toit LC. Intraocular drug delivery technologies: advancing treatment of posterior segment disorders of the eye. In: Pathak Y, Sutariya V, Hirani AA, Edited by. Nano-biomaterials for ophthalmic drug delivery. Cham: Springer International Publishing; 2016. p. 1–10.
  • Lindfield R, Vishwanath K, Ngounou F, et al. The challenges in improving outcome of cataract surgery in low and middle income countries. Indian J Ophthalmol. 2012;60(5):464–469.
  • Kompella UB, Kadam RS, Lee VH. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1(3):435–456.
  • Cetinel S, Montemagno C. Nanotechnology for the prevention and treatment of cataract. Asia Pac J Ophthalmol (Phila). 2015;4(6):381–387.
  • Azharuddin M, Dasgupta AK, Datta H. Gold nanoparticle conjugated with curcumin and curcumin nanoparticles as a possible nano-therapeutic drug in cataract. Curr Indian Eye Res. 2015;1:71.
  • Babizhayev MA, Deyev AI, Yermakova VN, et al. Efficacy of N-acetylcarnosine in the treatment of cataracts. Drugs R D. 2002;3(2):87–103.
  • Babizhayev MA, Deyev AI, Yermakova VN, et al. N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts. Peptides. 2001;22:979–994.
  • Dubois VDP, Bastawrous A. N‐acetylcarnosine (NAC) drops for age‐related cataract. Cochrane Database Syst Rev. 2017;2.
  • Somasundaram S, Blickenstaff G. A non-invasive approach for cataracts: efficacy of carnosine in the treatment and prevention of crystallin aggregation in vitro. JESS. 2013;5: 5–7.
  • Mark A, Yermakova VN. Erratum to “Nα-Acetylcarnoslne is a prodrug of L-carnosine in ophthalmic application as antioxidant”[Clin. Chim. Acta 254 (1996) 1-21]. Clin Chim Acta. 1997;259(199):201.
  • Li X, Zhang Z, Li J, et al. Diclofenac/biodegradable polymer micelles for ocular applications. Nanoscale. 2012;4(15):4667–4673.
  • Gupta H, Aqil M, Khar R, et al. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target. 2011;19(6):409–417.
  • Misra R, Upadhyay M, Mohanty S. Design considerations for chemotherapeutic drug nanocarriers. Pharm Anal Acta. 2014;5:279.
  • Zhou HY, Hao JL, Wang S, et al. Nanoparticles in the ocular drug delivery. Int J Ophthalmol. 2013;6(3):390.
  • Rafie F, Javadzadeh Y, Javadzadeh AR, et al. In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res. 2010;35(12):1081–1089.
  • Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res. 2010;29(6):596–609.
  • Nagai N, Ito Y. A new preparation method for ophthalmic drug nanoparticles. Pharm Anal Acta. 2014;5(6):1000305.
  • Khare A, Singh I, Pawar P, et al. Design and evaluation of voriconazole loaded solid lipid nanoparticles for ophthalmic application. J Drug Deliv. 2016;11.
  • Sunkireddy P, Jha SN, Kanwar JR, et al. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf B. 2013;112:554–562.
  • Baeyens V, Gurny R. Chemical and physical parameters of tears relevant for the design of ocular drug delivery formulations. Pharm Acta Helv. 1997;72(4):191–202.
  • Mudgil M, Pawar PK. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci Pharm. 2013;81(2):591–606.
  • Kalam MA, Sultana Y, Ali A, et al. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target. 2010;18(3):191–204.
  • Khalil RM, Abd-Elbary A, Kassem MA, et al. Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam. ‎Pharm Dev Technol. 2014;19(3):304–314.
  • Budama-Kilinc Y, Cakir-Koc R, Kecel-Gunduz S, et al. Novel NAC-loaded poly(lactide-co-glycolide acid) nanoparticles for cataract treatment: preparation, characterization, evaluation of structure, cytotoxicity, and molecular docking studies. Peer J. 2018;6:4270.
  • Reichl S, Bednarz J, Müller-Goymann C. Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br J Ophthalmol. 2004;88(4):560–565.
  • Kahn C, Young E, Lee IH, et al. Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies. Invest Ophthalmol Vis Sci. 1993;34(12):3429–3441.
  • Araki-Sasaki K, Ohashi Y, Sasabe T, et al. SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci1995. 36(3):614–621.
  • Toropainen E, Ranta V-P, Talvitie A, et al. Culture model of human corneal epithelium for prediction of ocular drug absorption. Invest Ophthalmol Vis Sci. 2001;42(12):2942–2948.
  • Kawazu K, Shiono H, Tanioka H, et al. Beta adrenergic antagonist permeation across cultured rabbit corneal epithelial cells grown on permeable supports. Curr Eye Res. 1998;17(2):125–131.
  • Huang Y, Ning J, Zhou T, et al. Multidrug resistance reversal study of Psoralen-loaded solid lipid nanoparticles. J Biomater Tissue Eng. 2015;5(10):780–787.
  • Katara R, Majumdar DK, Eudragit RL. 100-based nanoparticulate system of aceclofenac for ocular delivery. Colloids Surf B. 2013;103:455–462.
  • Gupta SK, Kalaiselvan V, Srivastava S, et al. Evaluation of anticataract potential of Triphala in selenite-induced cataract: in vitro and in vivo studies. J Ayurveda Integr Med. 2010;1(4):280.
  • Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS. 2013;10:5.
  • Dou QL, Wei YY, Gu YN, et al. Investigating the therapeutic effects of N-acetylcysteine decorated poly(L-lactic acid) nanoparticles on transfusion induced acute lung injury. J Biomater Tissue Eng. 2017;7(1):69–76.
  • Gong T, Su XT, Xia Q, et al. Biodegradable combinatorial drug loaded pH-sensitive liposomes for enhanced osteosarcoma therapeutics. J Biomater Tissue Eng. 2017;7(10):952–961.
  • Banerjee S, Sen K, Pal TK, et al. Poly (styrene-co-maleic acid)-based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced cancer chemotherapy. Int J Pharm. 2012;436(1–2):786–797.
  • Hulse WL, Forbes RT, Bonner MC, et al. The characterization and comparison of spray-dried mannitol samples. Drug Dev Ind Pharm. 2009;35(6):712–718.
  • Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010;17(7):467–489.