9,827
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Parameter determination for the Cross rheology equation and its application to modeling non-Newtonian flows using the WC-MPS method

&
Pages 111-129 | Received 04 Jun 2015, Accepted 01 Oct 2015, Published online: 30 Nov 2015

References

  • Ataie-Ashtiani, B., & Farhadi, L. (2006). A stable moving-particle semi-implicit method for free surface flows. Fluid Dynamics Research, 38(4), 241–256. doi: 10.1016/j.fluiddyn.2005.12.002
  • Barnes, H. A. (1999). The yield stress—a review or ‘παντα ροι‘—everything flows? Journal of Non-Newtonian Fluid Mechanics, 81, 133–178. doi: 10.1016/S0377-0257(98)00094-9
  • Barnes, H. A., Hutton, J. F., & Walters, K. (1989). An introduction to rheology. Amsterdam: Elsevier Science.
  • Basu, D., Das, K., Jenetzke, R., & Green, S. (2011). Numerical simulations of non-Newtonian geophysical flows using smoothed particle hydrodynamics (SPH) method: A rheological analysis. ASME 2011 International Mechanical Engineering Congress and Exposition: 155–164.
  • Chau, K. W., & Jiang, Y. W. (2001). 3D numerical model for Pearl river estuary. ASCE Journal of Hydraulic Engineering, 127(1), 72–82. doi: 10.1061/(ASCE)0733-9429(2001)127:1(72)
  • Chau, K. W., & Jiang, Y. W. (2004). A three-dimensional pollutant transport model in orthogonal curvilinear and sigma coordinate system for Pearl river estuary. International Journal of Environment and Pollution, 21(2), 188–198. doi: 10.1504/IJEP.2004.004185
  • Chen, X., Xi, G., & Sun, Z. (2014). Improving stability of MPS method by a computational scheme based on conceptual particles. Computational Methods in Applied Mechanics and Engineering, 278, 254–271. doi: 10.1016/j.cma.2014.05.023
  • Crespo, A. J. C. (2008). Application of the smoothed particle hydrodynamics model SPHysics to free-surface hydrodynamics. (PhD thesis), University of Vigo, Vigo, Galicia, Spain.
  • Cross, M. M. (1965). Rheoogy of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, 20(5), 417–437. doi: 10.1016/0095-8522(65)90022-X
  • Dalrymple, R. A., & Roger, B. D. (2006). Numerical modeling of water waves with the SPH method. Coastal Engineering. Coastal Hydrodynamics and Morphodynamics, 53(2–3), 141–147.
  • Fan, X., Tanner, R., & Zhang, R. (2010). Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow. Journal of Non-Newtonian Fluid Mechanics, 165(5–6), 219–226. doi: 10.1016/j.jnnfm.2009.12.004
  • Fu, L., & Jin, Y. C. (2014). Simulating velocity distribution of dam breaks with the particle method. ASCE Journal of Hydraulic Engineering, 140(10), 04014048. doi: 10.1061/(ASCE)HY.1943-7900.0000915
  • Gotoh, H., Ikari, H., Memita, T., & Sakai, T. (2005). Lagrangian particle method for simulation of wave overtopping on a vertical seawall. Coastal Engineering Journal, 47(2–3), 157–181. doi: 10.1142/S0578563405001239
  • Gotoh, H., & Sakai, T. (2006). Key issues in the particle method for computation of wave breaking. Coastal Engineering, 53(2–3), 171–179. doi: 10.1016/j.coastaleng.2005.10.007
  • Gotoh, H., Shibahara, T., & Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS method- Lagrangian flow model for hydraulic engineering. Computational Fluid Dynamics Journal, 9(4), 339–347.
  • Hammad, K. J., & Vradis, G. C. (1994). Flow of a non-Newtonian Bingham plastic through an axisymmetric sudden contraction: Effects of Reynolds and yield numbers. Numerical Methods in Non-Newtonian Fluid Dynamics, ASME FED, 179, 63–70.
  • Heo, S., Koshizuka, S., & Oka, Y. (2002). Numerical analysis of boiling on high heat-flux and high subcooling condition using MPS-MAFL. International Journal of Heat and Mass Transfer, 45(13), 2633–2642. doi: 10.1016/S0017-9310(02)00011-X
  • Khayyer, A., & Gotoh, H. (2008). Development of CMPS method for accurate water surface tracking in breaking wave. Coastal Engineering Journal, 50(2), 179–207. doi: 10.1142/S0578563408001788
  • Khayyer, A., & Gotoh, H. (2013). Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios. Journal of Computational Physics 2013, 242, 211–233.
  • Komatina, D., & Jovanovic, M. (1997). Experimental study of steady and unsteady free surface flows with water-clay mixtures. Journal of Hydraulic Research, 35(5), 579–590. doi: 10.1080/00221689709498395
  • Koshizuka, S., Nobe, A., & Oka, Y. (1998). Numerical analysis of breaking waves using the moving particle semi-implicit method. International Journal for Numerical Methods in Fluid, 26, 751–769. doi: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
  • Koshizuka, S., & Oka, Y. (2001). Application of moving particle semi-implicit method to nuclear reactor safety. Computational Fluid Dynamics Journal, 9, 366–375.
  • Koshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow with fluid fragmentation. Computational Fluid Dynamics Journal, 4(1), 29–46.
  • Lai, W., & Khan, A. A. (2012). Discontinuous Galerkin method for 1D shallow water flows in natural rivers. Engineering Applications of Computational Fluid Mechanics, 6(1), 74–86. doi: 10.1080/19942060.2012.11015404
  • Li, D., Sun, Z., Chen, X., Xi, G., & Liu, L. (2015). Analysis of wall boundary in moving particle semi-implicit method and a novel model of fluid–wall interaction. International Journal of Computational Fluid Dynamics, 29(3–5), 199–214. doi: 10.1080/10618562.2015.1028924
  • Liu, J., Koshizuka, S., & Oka, Y. (2005). A hybrid particle-mesh method for viscous, incompressible, multiphase flows. Journal of Computational Physics, 202(1), 65–93. doi: 10.1016/j.jcp.2004.07.002
  • Liu, T., & Yang, J. (2014). Three-dimensional computations of water-air flow in a bottom spillway during gate opening. Engineering Applications of Computational Fluid Mechanics, 8(1), 104–115. doi: 10.1080/19942060.2014.11015501
  • Lube, G., Herbert, E. H., Sparks, R. S. J., & Freundt, A. (2011). Granular column collapses down rough, inclined channels. Journal of Fluid Mechanics, 675, 347–368. doi: 10.1017/jfm.2011.21
  • Major, J. J., & Pierson, T. C. (2010). Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resources Research, 28(3), 841–857. doi: 10.1029/91WR02834
  • Martys, N. S., George, W. L., Chun, B. W., & Lootens, D. (2010). A smoothed particle hydrodynamics-based fluid model with a spatially dependent viscosity: Application to flow of a suspension with a non-Newtonian fluid matrix. Rheollogica Acta Acta, 49, 1059–1069. doi: 10.1007/s00397-010-0480-7
  • Minussi, R. B., & Maciel, dF. M. (2012). Numerical experimental comparison of dam break flows with non-Newtonian fluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34(2), 167–178. doi: 10.1590/S1678-58782012000200008
  • Narayanaswamy, M. S. (2008). A hybrid Boussinesq-SPH wave propagation model with applications to forced waves inrectangular tanks. (PhD thesis), Johns Hopkins University, Baltimore, Maryland, U.S.
  • Pan, W., Tartakovsky, A. M., & Monaghan, J. J. (2013). Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics. Journal of Computational Physics, 242, 828–842. doi: 10.1016/j.jcp.2012.10.027
  • Pu, H. J., Shao, S. D., Huang, Y. F., & Hussain, K. (2013). Evaluations of SWEs and SPH numerical modelling techniques for dam break flows. Engineering Applications of Computational Fluid Mechanics, 7(4), 544–563. doi: 10.1080/19942060.2013.11015492
  • Riviere, S., Khelladi, S., Farzaneh, S., Bakir, F., & Tcharkhtchi, A. (2013). Simulation of polymer flow using smoothed particle hydrodynamics method. Polymer Engineering and Science, 53(12), 2509–2518. doi: 10.1002/pen.23512
  • Roche, O., Montserrat, S., Nino, Y., & Tamburrino, A. (2008). Experimental observations of water-like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. Journal of Geophysical Research: Solid Earth, 113(B12), 1–15. doi: 10.1029/2008JB005664
  • Shakibaeinia, A., & Jin, Y. C. (2010). A weakly compressible MPS method for modeling of open boundary free-surface flow. International Journal for Numerical Methods in Fluids, 63(10), 1208–1232.
  • Shao, S. D., & Lo, Y. M. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 26, 787–800. doi: 10.1016/S0309-1708(03)00030-7
  • Shibata, K., & Koshizuka, S. (2007). Numerical analysis of shipping water impact on a deck using a particle method. Ocean Engineering, 34, 585–593. doi: 10.1016/j.oceaneng.2005.12.012
  • Spinewine, B., & Capart, H. (2013). Intense bed-load due to a sudden dam-break. Journal of Fluid Mechanics, 731, 579–614. doi: 10.1017/jfm.2013.227
  • Sueyoshi, M., Kashiwagi, M., & Naito, S. (2008). Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method. Journal of Marine Science and Technology, 13, 85–94. doi: 10.1007/s00773-007-0260-y
  • Sun, H., & Han, J. (2010). A particle-based unified model for non-Newtonian fluid simulation. Second International Conference on Computer Modeling and Simulation, 290–294.
  • Sun, Z., Xi, G., & Chen, X. (2009). A numerical study of stir mixing of liquids with particle method. Chemical Engineering Science, 64, 341–350. doi: 10.1016/j.ces.2008.10.034
  • Tao, J., Ren, J. L., Lei, X., & Lu, L. G. (2014). A corrected smoothed particle hydrodynamics approach to solve the non-isothermal non-Newtonian viscous fluid flow problems. Acta Physica Sinica, 63(21), 210203.
  • Tsubota, K., Wada, S., Kamada, H., Kitagawa, Y., Lima, R., & Yamaguchi, T. (2006). A particle method for blood flow simulation – application to flowing red blood cells and platelets. Journal of the Earth Simulator, 5, 2–7.
  • Wang, X. B., Morgenstern, N. R., & Chan, D. H. (2010). A model for geotechnical analysis of flow slides and debris flows. Canadian Geotechnical Journal, 47(12), 1401–1414. doi: 10.1139/T10-039
  • Whipple, K. X. (1997). Open-channel flow of Bingham fluids: Applications in debris-flow research. The Journal of Geology, 105(2), 243–262. doi: 10.1086/515916
  • Wu, C. L., & Chau, K. W. (2006). Mathematical model of water quality rehabilitation with rainwater utilization — a case study at Haigang. International Journal of Environment and Pollution, 28(3–4), 534–545. doi: 10.1504/IJEP.2006.011227
  • Wu, Q. R., Tan, M. Y., & Xing, J. T. (2014). An improved moving particle semi-implicit method for dam break simulation. Journal of Ship Mechanics, 18(9), 1044–1054.
  • Xiang, H., & Chen, B. (2015). Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel. Fluid Dynamics Research, 47, 015511. doi: 10.1088/0169-5983/47/1/015511
  • Xie, J., Tai, Y. C., & Jin, Y. C. (2013). Study of the free surface flow of water-kaolinite mixture by moving particle semi-implicit (MPS) method. International Journal fro Numerical and Analytical Methods in Geomechanics, 38(8), 811–827. doi: 10.1002/nag.2234