7,264
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Improving the performance of industrial clarifiers using three-dimensional computational fluid dynamics

, , , , , & show all
Pages 130-144 | Received 16 Apr 2015, Accepted 10 Nov 2015, Published online: 17 Dec 2015

References

  • Abdel-Gawad, S. M., & McCorquodale, J. A. (1985a). Numerical simulation of rectangular settling tanks. Journal of Hydraulic Research, 23, 85–100. doi: 10.1080/00221688509499358
  • Abdel-Gawad, S. M., & McCorquodale, J. A. (1985b). Simulation of particle concentration distribution in primary clarifiers. Canadian Journal of Civil Engineering, 12, 454–463. doi: 10.1139/l85-053
  • Adams, E. W., & Rodi, W. (1990). Modelling flow and mixing in sedimentation tanks. Journal of Hydraulic Engineering, 116, 895–913. doi: 10.1061/(ASCE)0733-9429(1990)116:7(895)
  • Al-Jeebory, A. A., Kris, J., & Ghawi, J. H. (2010). Performance improvement of water treatment plants in Iraq by CFD model. Al-Qadisiya Journal For Engineering Sciences, 3(1), 1–13.
  • ANSYS. (2013). FLUENT 14.5 User's Manual.
  • Barnard, J., Kunetz, T., & Sobanski, J. (2008). Sixty-five-year old final clarifier performance rivals that of modern designs. Water Science & Technology, 57(8), 1235–1240. doi: 10.2166/wst.2008.224
  • Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., … Van der Vorst, H. (1994). Templates for the solution of linear systems: Building blocks for iterative methods. Philadelphia, PA: SIAM.
  • Battistoni, P. (1997). Pre-treatment, measurement execution procedure and waste characteristics in the rheology of sewage sludges and the digested organic fraction of municipal solid wastes. Water Science and Technology, 36(11), 33–41. doi: 10.1016/S0273-1223(97)00666-5
  • Bingham, E. C. (1916). An investigation of the laws of plastic flow. U.S. Bureau of Standards Bulletin, 13, 309–353. doi: 10.6028/bulletin.304
  • Bokil, S. D. (1972). Effect of mechanical blending on the aerobic digestion of the waste activated sludge. (PhD Dissertation). Department of Civil and Engineering, University of Windsor, Ontario, Canada.
  • Bokil, S. D., & Bewtra, J. K. (1972). Influence of mechanical blending on aerobic digestion of waste activated sludge. Proc. 6th Int. Assoc. on Water Pollution Research and Control 421–438.
  • Brouckaer, C. J., & Buckley, C. A. (1999). The use of computational fluid dynamics for improving the design and operation of water and wastewater treatment plants. Water Science and Technology, 40, 81–89. doi: 10.1016/S0273-1223(99)00488-6
  • Camp, T. R. (1946). Sedimentation and the design of settling tanks. Transactions of the American Society of Civil Engineers, 111, 895–936.
  • Celik, I., Rodi, W., & Stamou, A. (1985). Prediction of hydrodynamic characteristics of rectangular settling tanks. Proceedings of the International Symposium on Refined Flow Modelling and Turbulence Measurements. Iowa City, Iowa, 641–651.
  • Choudhury, D. (1993). Introduction to the renormalization group method and turbulence modeling. Fluent Inc. Technical Memorandum TM-107.
  • Dahl, C., Larsen, T., & Petersen, O. (1994). Numerical modelling and measurement in a test secondary settling tank. Water Science and Technology, 30, 219–228.
  • DeClercq, B. (2003). Computational fluid dynamics of settling tanks: Development of experiments and rheological, settling and scraper submodels. (Dissertation). University of Ghent, Belgium.
  • De Cock, W., Blom, P., Vaes, G., & Berlamont, J. (1999). The feasibility of flocculation in a storage sedimentation basin. Water Science and Technology, 39, 75–83. doi: 10.1016/S0273-1223(99)00010-4
  • DeVantier, B. A., & Larock, B. E. (1987). Modelling sediment-induced density currents in sedimentation basins. Journal of Hydraulic Engineering, 113, 80–94. doi: 10.1061/(ASCE)0733-9429(1987)113:1(80)
  • Dick, R. I., & Young, K. W. (1972). Analysis of thickening performance of final settling tanks. Proeedings of the 27th Industrial Waste Conference. Purdue University, Lafayette, Indiana, 33–54.
  • Dobbins, W. E. (1944). Effect of turbulence on sedimentation. Transactions of the American Society of Civil Engineers, 109, 629–656.
  • Ekama, G. A., Barnard, J., Gunthert, F., Krebs, P., McCorquodale, J. A., Parker, D. S., & Wahlberg, E. J. (1997). Secondary settling tanks: Theory, modelling, design and operation, International Association on Water Quality, STR No. 6, Richmond, UK.
  • Esler, J. K., Hartnett, W. J., & Haug, R. A. (2001). Enhanced flocculation and energy dissipation feedwell assembly for water and wastewater treatment clarifiers. US Patent 6,276,537 B1.
  • Ghawi, A. G., & Kriš, J. (2011). Improvement performance of secondary clarifiers by a computational fluid dynamics model. Slovak Journal of Civil Engineering, XIX(4), 1–11. doi: 10.2478/v10189-011-0017-9
  • Goula, A. M., Kostoglou, M., Karapantsios, T. D., & Zouboulis, A. I. (2008). A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle. Chemical Engineering Journal, 140(1), 110–121. doi: 10.1016/j.cej.2007.09.022
  • Griborio, A. (2004). Secondary clarifier modeling: A multi-process approach. (PhD Dissertation). University of New Orleans, USA.
  • Griborio, A., Martinez, F., Stanley, E., Koroshec, J., & Coates, D. (2012). Successful clarifier rehabilitation: From CFD modeling, to performance specifications, to compliance-while saving money. Proceedings of the Water Environment Federation 16: 761–768.
  • Hazen, A. (1904). On sedimentation. Transactions of the American Society of Civil Engineers, 53, 45–88.
  • Huang, X., & Garcia, M. H. (1998). A Herschel–Bulkley model for mud flow down a slope. Journal of Fluid Mechanics, 374, 305–333. doi: 10.1017/S0022112098002845
  • Imam, E., McCorquodale, J. A., & Bewtra, J. K. (1983). Numerical modelling of sedimentation tanks. Journal of Hydraulic Engineering, 109, 1740–1754. doi: 10.1061/(ASCE)0733-9429(1983)109:12(1740)
  • Kinnear, D. J. (2002). Biological solids sedimentation: A model incorporating fundamental settling and compression properties. (PhD Dissertation). University of Utah, USA.
  • Kobayashi, T., & Yoda, M. (1987). Modified k-ε model for turbulent swirling flow in a straight pipe. JSME international journal, 30(259), 66–71. doi: 10.1299/jsme1987.30.66
  • Krebs, P. (1991). The hydraulics of final settling tanks. Water Science and Technology, 23, 1037–1046.
  • Laine, S., Phan, L., Pellarin, P., & Robert, P. (1999). Operating diagnostics on a flocculator-settling tank using FLUENT CFD software. Water Science and Technology, 39, 155–162. doi: 10.1016/S0273-1223(99)00071-2
  • Larsen, P. (1977). On the hydraulics of rectangular settling basins, experimental and theoretical studies. Report no. 1001, Dept of Water Resour Engrg, Lund Inst of Tech, Lund Univ, Lund, Sweden.
  • Launder, B. E. (1989). Second-moment closure: Present …  and future? International Journal of Heat and Fluid Flow, 10(4), 282–300. doi: 10.1016/0142-727X(89)90017-9
  • Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537–566. doi: 10.1017/S0022112075001814
  • Launder, B. E., & Spalding, D. B. (1972). Lectures in mathematical models of turbulence. London, England: Academic Press.
  • Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering, 3(2), 269–289. doi: 10.1016/0045-7825(74)90029-2
  • Lo, D. (2013). New flocculation centre well design for circular final clarifiers at the Tai Po Sewage Treatment Works. HKIE Transactions, 20(4), 221–229. doi: 10.1080/1023697X.2013.861187
  • McCorquodale, J. A., Griborio, A., & Georgiou, I. (2005). A public domain settling tank model. Proceedings of the Water Environment Federation 2546–2561.
  • McCorquodale, J. A., Griborio, A., & Georgiou, I. (2006). Application of a CFD model to improve the performance of rectangular clarifiers. Proceedings of the 79th Annual Water Environment Federation Technical Exposition and Conference 310–320.
  • McCorquodale, J. A., Griborio, A., Li, J., Horneck, H., & Biswas, N. (2007). Modeling a retention treatment basin for CSO. Journal of Environmental Engineering, 133(3), 263–270. doi: 10.1061/(ASCE)0733-9372(2007)133:3(263)
  • McCorquodale, J. A., & Zhou, S. P. (1993). Effect of hydraulic and solids loading on clarifier performance. Journal of Hydraulic Research, 31, 461–478. doi: 10.1080/00221689309498870
  • Metzner, A. B., & Reed, J. C. (1955). Flow of non-newtonian fluids—correlation of the laminar, transition, and turbulent-flow regions. AIChE Journal, 1, 434–440. doi: 10.1002/aic.690010409
  • Monteiro, P. S. (1997). The influence of the anaerobic digestion process on the sewage sludges rheological behaviour. Water Science and Technology, 36(11), 61–67. doi: 10.1016/S0273-1223(97)00670-7
  • Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–1806. doi: 10.1016/0017-9310(72)90054-3
  • Ramalingam, K., Gong, M., Xanthos, S., Fillos, J., Beckmann, K., & Deur, A. (2007). Development and validation of a 3-D CFD model for rectangular settling tanks in NYC water pollution control plants. Proceedings of design, operation and economics of large wastewater treatment plants. Vienna, Austria.
  • Ramalingam, K., Xanthos, S., Gong, M., Fillos, J., Beckmann, K., Deur, A., & McCorquodale, J. A. (2012). Critical modeling parameters identified for 3D CFD modeling of rectangular final settling tanks for New York city wastewater treatment plants. Water Science & Technology, 65(6), 1087–1094. doi: 10.2166/wst.2012.944
  • Rodi, W. (1980). Turbulence models and their application in hydraulics, A state-of-the-art review. Delft, The Netherlands: IAHR.
  • Schamber, D. R., & Larock, B. E. (1981). Numerical analysis of flow in sedimentation basins. Journal of the Hydraulic Division, 107, 575–591.
  • Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), 227–238. doi: 10.1016/0045-7930(94)00032-T
  • Sloan, D. G., Smith, P. J., & Smoot, L. D. (1986). Modeling of swirl in turbulent flow systems. Progress in Energy and Combustion Science, 12(3), 163–250. doi: 10.1016/0360-1285(86)90016-X
  • Sozanski, M., Kempa, E., Grocholski, K., & Bien, J. (1997). The rheology experiment in sludge properties research. Water Science and Technology, 36(11), 69–78. doi: 10.1016/S0273-1223(97)00671-9
  • Water Pollution Control Federation. (1985). Sludge stabilization, Manual of Practice FD-9 Washington DC.
  • White, R. B., Sutalo, I. D., & Nguyen, T. (2003). Fluid flow in thickener feedwell models. Minerals Engineering, 16, 145–150. doi: 10.1016/S0892-6875(02)00252-2
  • Xanthos, S., Gong, M., Ramalingam, K., Fillos, J., Deur, A., Beckmann, K., & McCorquodale, J. A. (2011). Performance assessment of secondary settling tanks using CFD modeling. Water Resources Management, 25, 1169–1182. doi: 10.1007/s11269-010-9620-1
  • Xanthos, S., Ramalingam, K., Lipke, S., McKenna, B., & Fillos, J. (2013). Implementation of CFD modeling in the performance assessment and optimization of secondary clarifiers: The PVSC case study. Water Science & Technology, 68(9), 1901–1913. doi: 10.2166/wst.2013.280
  • Zhou, S., & McCorquodale, J. A. (1992a). Influence of skirt radius on performance of circular clarifier with density stratification. International Journal for Numerical Methods in Fluids, 14, 919–934. doi: 10.1002/fld.1650140804
  • Zhou, S., & McCorquodale, J. A. (1992b). Mathematical modelling of a circular clarifier. Canadian Journal of Civil Engineering, 19, 365–374. doi: 10.1139/l92-044
  • Zhou, S., & McCorquodale, J. A. (1992c). Modelling of rectangular settling tanks. Journal of Hydraulic Engineering, 118, 1391–1405. doi: 10.1061/(ASCE)0733-9429(1992)118:10(1391)
  • Zhou, S., McCorquodale, J. A., Richardson, J., & Wilson, T. (2005). State of the art clarifier modeling technology – Part II. WEFTEC, Washington DC.