3,168
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system

, , &
Pages 145-159 | Received 29 Apr 2015, Accepted 16 Nov 2015, Published online: 08 Jan 2016

References

  • Carlton, J., Radosavljevic, D., & Whitworth, S. (2009 June). Rudder-propeller-hull interaction: The results of some recent research, in-service problems and their solutions. First International Symposium on Marine Propulsors, Trondheim, Norway.
  • Carrica, P. M., Fu, H. P., & Stern, F. (2011). Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship (KCS) model. Applied Ocean Research, 33(4), 309–320. doi:10.1016/j.apor.2011.07.003
  • Çelik, F. (2007). A numerical study for effectiveness of a wake equalizing duct. Ocean Engineering, 34(16), 2138–2145. doi:10.1016/j.oceaneng.2007.04.006
  • Dang, J., Chen, H., Dong, G., Ploeg, A. V., Hallmann, R., & Mauro, F. (2011 October). An exploratory study on the working principles of Energy Saving Devices (ESDs). Symposium on Green Ship Technology, Wuxi, China.
  • Dubbioso, G., Muscari, R., & Mascio, A. D. (2014). Analysis of a marine propeller operating in oblique flow. Part 2: Very high incidence angles. Computers & Fluids, 92, 56–81. doi:10.1016/j.compfluid.2013.11.032
  • Ji B., Luo, X. W., Peng, X. X., Wu, Y. L., & Xu, H. Y. (2012). Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. International Journal of Multiphase Flow, 43, 13–21. doi:10.1016/j.ijmultiphaseflow.2012.02.006
  • Kawamura, T., Ouchi, K., & Nojiri, T. (2012). Model and full scale CFD analysis of propeller boss cap fins (PBCF). Journal of Marine Science and Technology, 17(4), 469–480. doi:10.1007/s00773-012-0181-2
  • Lam, W. H., Hamill, G. A., & Robinson, D. J. (2013). Initial wash profiles from a ship propeller using CFD method. Ocean Engineering, 72, 257–266. 10.1016/j.oceaneng.2013.07.010 doi: 10.1016/j.oceaneng.2013.07.010
  • Lam, W. H., Robinson, D. J., Hamill, G. A., & Johnston, H. T. (2012). An effective method for comparing the turbulence intensity from LDA measurements and CFD predictions within a ship propeller jet. Ocean Engineering, 52, 105–124. doi:10.1016/j.oceaneng.2012.06.016
  • Lee, K. J., Bae, J. H., Kim, H. T., & Hoshino, T. (2014). A performance study on the energy recovering turbine behind a marine propeller. Ocean Engineering, 91, 152–158. doi:10.1016/j.oceaneng.2014.09.004
  • Liang, Z. C., & Xue, L. P. (2014). Detached-eddy simulation of wing-tip vortex in the near field of NACA 0015 airfoil. Journal of Hydrodynamics, Ser. B, 26(2), 199–206. doi:10.1016/S1001-6058(14)60022-6
  • Lim, S. S., Kim, T. W., Lee, D. M., Kang, C. G., & Kim, S. Y. (2014). Parametric study of propeller boss cap fins for container ships. International Journal of Naval Architecture and Ocean Engineering, 6(2), 187–205. doi:10.2478/ijnaoe-2013-0172
  • Li, P. C., Zhou, W. X., & Dong, S. T. (2014). A design method of Propeller Boss Cap Fins (PBCF). ShipBuilding of China, 55(1), 19–27. doi:10.1016/S1001-6058(14)60066-4
  • Ma, C., Cai, H. P., & Qian, Z. F. (2014). The design of propeller and propeller boss cap fins (PBCF) by an integrative method. Journal of Hydrodynamics, 26(4), 586–593. doi:10.1016/S1001-6058(14)60066-4
  • Nojiri, T., Ishii, N., & Kai, H. (2011). Energy saving technology of PBCF (propeller boss cap fins) and its evolution. Journal of The Japan Institute of Marine Engineering, 46(3), 350–358. doi:10.5988/jime.46.350
  • Park, W. G., Jung, Y. R., & Kim, C. K. (2005). Numerical flow analysis of single-stage ducted marine propulsor. Ocean Engineering, 32(10), 1260–1277. 10.1016/j.oceaneng.2004.10.022 doi: 10.1016/j.oceaneng.2004.10.022
  • Rafael, C. A., Farid, B., Alfonso, C. A., Sofiane, K., Manuel, P. G., & Robert, R. (2015). Numerical analysis of unsteady cavitating flow in an axial inducer. Applied Thermal Engineering, 75, 1302–1310. doi:10.1016/j.applthermaleng.2014.07.063
  • Salvatore, F., Streckwall, H., & Terwisga, T.V. (2009 June). Propeller Cavitation Modelling by CFD - Results from the VIRTUE 2008 ROME Workshop. First International Symposium on Marine Propulsors, Trondheim, Norway.
  • Shamsi, R., Ghassemi, H., Molyneux, D., & Liu, P. F. (2014). Numerical hydrodynamic evaluation of propeller (with hub taper) and podded drive in azimuthing conditions. Ocean Engineering, 76, 121–135. 10.1016/j.oceaneng.2013.10.009 doi: 10.1016/j.oceaneng.2013.10.009
  • Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124(3), 617–624. doi:10.1115/1.1486223
  • Tamura, Y. (2010 June). Development of a high performance ducted propeller. Tenth International Conference on Intelligent Tutoring Systems, Pittsburgh, United States, 1–8.
  • Travin, A., Shur, M., Strelets, M., & Spalart, P. R. (2002). Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. Fluid Mechanics and Its Applications, 65, 239–254. doi:10.1007/0-306-48383-1_16
  • Wang, S., Su, Y. M., Wang, Z. L., Zhu, X. G., & Liu, H. X. (2014). Numerical and experimental analyses of transverse static stability loss of planning craft sailing at high forward speed. Engineering Applications of Computational Fluid Mechanics, 8(1), 44–54. doi:10.1080/19942060.2014.11015496
  • Watanabe, T., Kawamura, T., Yoshihisa, T., Maeda, M., & Rhee, S. H. (2003 November). Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code. Fifth International Symposium on Cavitation, Osaka, Japan, 1–8.
  • Xiong, Y., Wang, Z. Z., & Qi, W. J. (2013). Numerical study on the influence of boss cap fins on efficiency of controllable-pitch propeller. Journal of Marine Science and Technology, 12(1), 13–20. doi:10.1007/s11804-013-1166-9
  • Zhu, Z. F., & Fang, S. L. (2012). Numerical investigation of cavitation performance of ship propellers. Journal of Hydrodynamics, Ser. B, 24(3), 347–353. 10.1016/S1001-6058(11)60254-0 doi: 10.1016/S1001-6058(11)60254-0