1,784
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Design of modified structure multi-layer perceptron networks based on decision trees for the prediction of flow parameters in 90° open-channel bends

, , , &
Pages 193-208 | Received 24 May 2015, Accepted 02 Dec 2015, Published online: 25 Feb 2016

References

  • Akbari, M., Solaimani, K., Mahdavi, M., & Habibnejhad, M. (2011). Monitoring of regional low-flow frequency using artificial neural networks. Journal of Water Sciences Research, 3(1), 1–17.
  • Akhtari, A. A., Abrishami, J., & Sharifi, M. B. (2009). Experimental investigations water surface characteristics in strongly-curved open channels. Journal of Applied Sciences, 9(20), 3699–3706. doi: 10.3923/jas.2009.3699.3706
  • Anwar, H. O. (1986). Turbulent structure in a river bend. Journal of Hydraulic Engineering, 112(8), 657–669. doi: 10.1061/(ASCE)0733-9429(1986)112:8(657)
  • Armfield Limited, Co. (1995). Instruction manual of miniature propeller velocity meter type H33.
  • Baghalian, S., Bonakdari, H., Nazari, F., & Fazli, M. (2012). Closed-form solution for flow field in curved channels in comparison with experimental and numerical analyses and artificial neural network. Engineering Applications of Computational Fluid Mechanics, 6(4), 514–526. doi: 10.1080/19942060.2012.11015439
  • Bahrami, E. J., Ghaneeizad, S. M., & Akhtari, A. A. (2009). Experimental study on flow structure in strongly curved open channel 90-degree bends. International Symposium on Water Management and Hydraulic Engineering. (A32). Ohrid, Macedonia, Greece, 1–5 September.
  • Bergs, M. A. (1990). Flow processes in a curved alluvial channel. Ph. D. Thesis. The University of Iowa.
  • Bilhan, O., Emiroglu, M. E., & Kisi, O. (2010). Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel. Advances in Engineering Software, 41(6), 831–837. doi: 10.1016/j.advengsoft.2010.03.001
  • Bilhan, O., Emiroglu, M. E., & Kisi, O. (2011). Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels. Advances in Engineering Software, 42(4), 208–214. doi: 10.1016/j.advengsoft.2011.02.006
  • Bishop, C. M. (1995). Neural networks for pattern recognition. NewYork, NY: Oxford university press Inc.
  • Blanckaert, K., & DeVriend, H. J. (2004). Secondary flow in sharp open-channel bends. Journal of fluid Mechanics, 498, 353–380. doi: 10.1017/S0022112003006979
  • Blanckaert, K., & Graf, W. H. (2001). Mean flow and turbulence in open channel bend. Journal of Hydraulic Engineering, 127(10), 835–847. doi: 10.1061/(ASCE)0733-9429(2001)127:10(835)
  • Bodnar, T., & Prihoda, J. (2006). Numerical simulation of turbulent free-surface flow in curved channel. Flow, Turbulence and Combustion, 76, 429–442. doi: 10.1007/s10494-006-9030-x
  • Bonakdari, H., Baghalian, S., Nazari, F., & Fazli, M. (2011). Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm. Engineering Applications of Computational Fluid Mechanics, 5(3), 384–396. doi: 10.1080/19942060.2011.11015380
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth, Belmont, California, USA: Belmont, Wadsworth international group.
  • Chang, C. L., & Liao, C. S. (2012). Parameter sensitivity analysis of artificial neural network for predicting water turbidity. World Academy of Science, Engineering and Technology, 70, 657–660.
  • Chau, K. W., & Chen, W. (2006). Real-time prediction of water stage with artificial neural network approach. Lecture Notes in Computer Science, 2557, 715. doi: 10.1007/3-540-36187-1_64
  • Chau, K.W., & Wu, C. L. (2010). A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. Journal of Hydroinformatics, 12 (4), 458–473. doi: 10.2166/hydro.2010.032
  • Chau, K. W., Wu, C. L., & Li, Y. S. (2005). Comparison of several flood forecasting models in Yangtze river. Journal of Hydrologic Engineering, 10(6), 485–491. doi: 10.1061/(ASCE)1084-0699(2005)10:6(485)
  • Cheng, C., Chau, K. W., Sun, Y., & Lin, J. (2005). Long-term prediction of discharges in manwan reservoir using artificial neural network models. Lecture Notes in Computer Science, 3498, 1040–1045. doi: 10.1007/11427469_165
  • Chen, W., Chau, K. W. (2006). Intelligent manipulation and calibration of parameters for hydrological models. International Journal of Environment and Pollution, 28(3–4), 432–447. doi: 10.1504/IJEP.2006.011221
  • Dawson, C. W., & Wilby, R. L. (2005). Hydrological modelling using artificial neural networks. Progress in physical geography, 25(1), 80–108. doi: 10.1177/030913330102500104
  • DeMarchis, M., & Napoli, E. (2006). 3D numerical simulation of curved open channel flows. Proceedings of 6th International Conference on Water Resources, Hydraulics & Hydrology (pp. 86–91). Chalkida, Evia Island, Greece, May 11–13.
  • DeVriend, H. J., & Geldof, H. J. (1983). Main flow velocity in short river bends. Journal of Hydraulics Engineering, 109(7), 991–1011. doi: 10.1061/(ASCE)0733-9429(1983)109:7(991)
  • Dursun, O. F., Kaya, N., & Firat, M. (2012). Estimating discharge coefficient of semi-elliptical side weir using ANFIS. Journal of Hydrology, 426-427, 55–62. doi: 10.1016/j.jhydrol.2012.01.010
  • Ebtehaj I., & Bonakdari, H. (2013). Evaluation of sediment transport in sewer using artificial neural network. Engineering Applications of Computational Fluid Mechanics, 7(3), 382–392. doi: 10.1080/19942060.2013.11015479
  • Gholami, A., Akhtari, A. A., Minatour, Y., Bonakdari, H., & Javadi, A. A. (2014). Experimental and numerical study on velocity fields and water surface profile in a strongly-curved 90° open channel bend. Engineering Applications of Computational Fluid Mechanics, 8(3), 447–461. doi: 10.1080/19942060.2014.11015528
  • Gholami, A., Bonakdari, H., Zaji, A. H., & Akhtari, A. A. (2015). Simulation of open channel bend characteristics using computational fluid dynamics and artificial neural networks. Engineering Applications of Computational Fluid Mechanics, 9(1), 355–369. doi: 10.1080/19942060.2015.1033808
  • Haykin, S. (1999). Neural networks. A comprehensive foundation, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall Inc.
  • Jeng, D. S., Bateni, S. M., & Lockett, E. (2005). Neural Network assessment for scour depth around bridge piers. The University of Sydney, Environmental Fluids, Research Report No R855.
  • Jung, J. W., & Yoon, S. E. (2000). Flow and bed topography in a 180-degree curved channel. 4th International Conference on Hydro-Science and Engineering: Korea Water Resources Association.
  • Khan, M. S. & Coulibaly, P. (2006). Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11(3), 199–205. doi: 10.1061/(ASCE)1084-0699(2006)11:3(199)
  • Kim, S., Shiri, J., & Kisi, O. (2012). Pan evaporation modeling using neural computing approach for different climatic zones. Water Resources Management, 26, 3231–3249. doi: 10.1007/s11269-012-0069-2
  • Kisi, O. (2008a). Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal, 49(6), 1025–1040.
  • Kisi, O. (2008b). The potential of different ANN techniques in evapotranspiration modelling. Hydrological Processes, 22, 2449–2460. doi: 10.1002/hyp.6837
  • Kisi, O. (2009). Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrological Processes, 23, 213–223. doi: 10.1002/hyp.7126
  • Kisi, O., & Cigizoglu, H. K. (2007). Comparison of different ANN techniques in river flow prediction. Civil Engineering and Environmental Systems, 24(51), 211–231. doi: 10.1080/10286600600888565
  • Kisi, O., Emiroglu, M. E., Bilhan, O., & Guven, A. (2012). Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches. Expert Systems with Applications, 39(3), 3454–3460. doi: 10.1016/j.eswa.2011.09.035
  • Leschziner, M. A., & Rodi, W. (1979). Calculation of strongly curved open channel flow. Journal of the Hydraulics Division, 105(10), 1297–1314.
  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in Least-Squares. The Quarterly of Applied Mathematics, 2, 164–168.
  • Mohamed, H. I., & Hashem, M. (2006). Estimation of longitudinal dispersion coefficient in rivers using artificial neural networks. Journal of Engineering Sciences, 34(5), 1341–1352.
  • Moharrampour, M., Kherad, M., Abachi, N., Zoghi, M., & Asadi, M. R. A. A. (2012). Comparison of artificial neural networks ANN and statistics in daily flow forecasting. Advances in Enviromental Biology, 6(2), 863–868.
  • Naji, M. A., Ghodsian, M., Vaghefi, M., & Panahpur, N. (2010). Experimental and numerical simulation of flow in a 90° bend. Flow Measurement and Instrumentation, 21(3), 292–298. doi: 10.1016/j.flowmeasinst.2010.03.002
  • Ramamurthy, A., Han, S., & Biron, P. (2013). Three-dimensional simulation parameters for 90° open channel bend flows. Journal of Computing in Civil Engineering, 27(3), 282–291. doi: 10.1061/(ASCE)CP.1943-5487.0000209
  • Rezaeian Zadeh, M., Amin, S., Khalili, D., & Singh, V. P. (2010). Daily outflow prediction by multilayer perception with logistic sigmoid and tangent sigmoid activation functions. Journal of Water Resources Mangement, 24(11), 2673–2688. doi: 10.1007/s11269-009-9573-4
  • Rowiński, P. M., Piotrowski, A., & Napiórkowski, J. J. (2005). Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers?/Les techniques de réseaux de neurones artificiels sont-elles pertinentes pour estimer le coefficient de dispersion longitudinale en rivières? Journal of Hydrological Sciences, 50(1), 175–187. doi: 10.1623/hysj.50.1.175.56339
  • Rozovskii, I. L. (1957). Flow of Water in Bends of Open Channels. Kiev: Academy of Sciences of the Ukrainian SSR. [Jerusalem: Israel Program for Scientific Translations [1961]].
  • Sahu, M., Jana, S., Agarwal, S., & Khatua, K. K. (2011). Point form velocity prediction in meandering open channel using artificial neural network. 2nd International Conference on Environmental Science and Technology: Vol. 6. (pp. 209–212). Singapore: IACSIT Press.
  • Shukry, A. (1950). Flow around bends in an open flume. Transactions, ASCE, 115, 751–788.
  • Smith, M. (1993). Neural networks for statistical modeling. NewYork, NY: Thomson Learning.
  • Sui, J., Fang, D., & Karney, B. W. (2006). An experimental study into local scour in a channel caused by a 90° bend. Canadian Journal of Civil Engineering, 33, 902–911. doi: 10.1139/l06-037
  • Taormina, R., & Chau, K. W. (2015). Neural network river forecasting with multi-objective fully informed particle swarm optimization. Journal of Hydroinformatics, 17(1), 99–113. doi: 10.2166/hydro.2014.116
  • Tayfur, G. (2002). Artificial neural network for sheet sediment transport. Hydrological Sciences Journal- Journal des Science Hydrologiques, 47(6), 879–892. doi: 10.1080/02626660209492997
  • Uddin, M. N., & Rahman, M. M. (2012). Flow and erosion at a bend in the braided Jamuna River. International Journal of Sediment Research, 27(4), 498–509. doi: 10.1016/S1001-6279(13)60008-6
  • Wang, W. C., Chau, K. W., Cheng, C. T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374(3–4), 294–306. doi: 10.1016/j.jhydrol.2009.06.019
  • Wang, W. C., Chau, K. W., Xu, D. M., & Chen, X. Y. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Management, 29(8), 2655–2675. doi: 10.1007/s11269-015-0962-6
  • Wu, C. L., Chau, K. W., & Li, Y. S. (2008). River stage prediction based on a distributed support vector regression. Journal of Hydrology, 358(1–2), 96–111. doi: 10.1016/j.jhydrol.2008.05.028
  • Wu, C. L., Chau, K. W., & Li, Y. S. (2009). Methods to improve neural network performance in daily flows prediction. Journal of Hydrology, 372(1–4), 80–93. doi: 10.1016/j.jhydrol.2009.03.038
  • Ye, J., & McCorquodale, J. A. (1998). Simulation of curved open channel flows by 3D hydrodynamic model. Journal of Hydraulic Engineering, 124(7), 687–698. doi: 10.1061/(ASCE)0733-9429(1998)124:7(687)
  • Yonaba, H., Anctil, F., & Fortin, V. (2010). Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. Journal of Hydrologic Engineering, 15(4), 275–283. doi: 10.1061/(ASCE)HE.1943-5584.0000188
  • Zaji, A. H., & Bonakdari, H. (2014). Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs. Flow Measurement and Instrumentation, 40, 149–156. doi: 10.1016/j.flowmeasinst.2014.10.002
  • Zaji, A. H., & Bonakdari, H. (2015a). Application of artificial neural network and genetic programming models for estimating the longitudinal velocity field in open channel junctions. Flow Measurement and Instrumentation, 41, 81–89. doi: 10.1016/j.flowmeasinst.2014.10.011
  • Zaji, A. H., & Bonakdari, H. (2015b). Efficient methods for prediction of velocity fields in open channel junctions based on the artifical neural network. Engineering Applications of Computational Fluid Mechanics, 9(1), 1–13. doi: 10.1080/19942060.2015.1004821
  • Zeng, Y., & Huai, W. (2009). Application of artificial neural network to predict the friction factor of open channel flow. Communications in Nonlinear Science and Numerical Simulation, 14, 2373–2378. doi: 10.1016/j.cnsns.2007.12.012
  • Zhang, M. L., & Shen, Y. M. (2008). Three dimensional simulation of meandering river based on 3-D k-ε (RNG) turbulence model. Journal of Hydrodynamics, 20(4), 448–455. doi: 10.1016/S1001-6058(08)60079-7