3,541
Views
10
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

, , , &
Pages 346-358 | Received 20 Jun 2015, Accepted 20 Mar 2016, Published online: 22 Apr 2016

References

  • Aidun, C. K., & Clausen, J. R. (2010). Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42(1), 439–472. 10.1146/annurev-fluid-121108-145519
  • Ansley, R. W., & Smith, T. N. (1967). Motion of spherical particles in a Bingham plastic. AIChE Journal, 13(6), 1193–1196.
  • Bell, B. C., & Surana, K. S. (1994). p-version least squares finite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow. International Journal for Numerical Methods in Fluids, 18(2), 127–162.
  • Beris, A. N., Tsamopoulos, J. A., Armstrong, R. C., & Brown, R. A. (1985). Creeping motion of a sphere through a Bingham plastic. Journal of Fluid Mechanics, 158(Sep), 219–244. doi:10.1017/S0022112085002622
  • Bethmont, S., Schwarzentruber, L., Stefani, C., Leroy, R., Wallevik, O., & Nielsson, I. (2003). Defining the stability criterion of a sphere suspended in a cement paste: A way to study the segregation risk in self compacting concrete (SCC). Paper presented at the 3rd International Symposium on Self-Compacting Concrete.
  • Bird, R. B., Dai, G., & Yarusso, B. J. (1983). The rheology and flow of viscoplastic materials. Rev. Chem. Eng, 1(1), 1–70.
  • Blackery, J., & Mitsoulis, E. (1997). Creeping motion of a sphere in tubes filled with a Bingham plastic material. Journal of Non-Newtonian Fluid Mechanics, 70(1–2), 59–77. doi:10.1016/S0377-0257(96)01536-4
  • Chai, Z., Shi, B., Guo, Z., & Rong, F. (2011). Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows. Journal of Non-Newtonian Fluid Mechanics, 166(5–6), 332–342. 10.1016/j.jnnfm.2011.01.002
  • Chai, Z., & Zhao, T. S. (2012). Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor. Physical Review E, 86(1). doi:10.1103/Physreve.86.016705
  • Chatzimina, M., Georgiou, G. C., Argyropaidas, I., Mitsoulis, E., & Huilgol, R. R. (2005). Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times. Journal of Non-Newtonian Fluid Mechanics, 129(3), 117–127. doi:10.1016/j.jnnfm.2005.07.001
  • Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30, 329–364. doi:10.1146/annurev.fluid.30.1.329
  • Chen, S.-G., Sun, Q.-C., Jin, F., & Liu, J.-G. (2014). Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model. Science China Physics, Mechanics and Astronomy, 57(3), 532–540. 10.1007/s11433-013-5178-2
  • Clausen, J. R., Reasor, D. A., & Aidun, C. K. (2010). Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture. Computer Physics Communications, 181(6), 1013–1020. doi:10.1016/j.cpc.2010.02.005
  • Deng, X. G., Mao, M. L., Tu, G. H., Zhang, H. X., & Zhang, Y. F. (2012). High-order and high accurate CFD methods and their applications for complex grid problems. Communications in Computational Physics, 11(4), 1081–1102. doi:10.4208/cicp.100510.150511s
  • Derksen, J. J. (2008). Flow-induced forces in sphere doublets. Journal of Fluid Mechanics, 608, 337–356. 10.1017/S0022112008002309
  • Derksen, J. J., & Sundaresan, S. (2007). Direct numerical simulations of dense suspensions: Wave instabilities in liquid-fluidized beds. Journal of Fluid Mechanics, 587, 303–336. doi:10.1017/S0022112007007094
  • d’Humieres, D. (1994). Generalized lattice-Boltzmann equations. Rarefied gas dynamics-Theory and simulations, 450–458.
  • d’Humieres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., & Luo, L. S. (2002). Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 360(1792), 437–451. doi:10.1098/rsta.2001.0955
  • Feichtinger, C., Habich, J., Köstler, H., Hager, G., Rüde, U., & Wellein, G. (2011). A flexible Patch-based lattice Boltzmann parallelization approach for heterogeneous GPU–CPU clusters. Parallel Computing, 37(9), 536–549. doi:10.1016/j.parco.2011.03.005
  • Haghani, R., Rahimian, M. H., & Taghilou, M. (2013). Lbm simulation of a droplet dripping down a hole. Engineering Applications of Computational Fluid Mechanics, 7(4), 461–470.
  • Kandhai, D., Koponen, A., Hoekstra, A. G., Kataja, M., Timonen, J., & Sloot, P. M. A. (1998). Lattice-Boltzmann hydrodynamics on parallel systems. Computer Physics Communications, 111(1–3), 14–26. 10.1016/S0010-4655(98)00025-3
  • Lallemand, P., & Luo, L.-S. (2000). Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61(6), 6546–6562.
  • Lee, C.-H., Huang, Z- H., & Chiew, Y.-M. (2015). An extrapolation-based boundary treatment for using the lattice Boltzmann method to simulate fluid-particle interaction near a wall. Engineering Applications of Computational Fluid Mechanics, 9(1), 370–381. 10.1080/19942060.2015.1061554
  • Lee, I.-B., Bitog, J. P. P., Hong, S.-W., Seo, I.-H., Kwon, K.-S., Bartzanas, T., & Kacira, M. (2013). The past, present and future of CFD for agro-environmental applications. Computers and Electronics in Agriculture, 93, 168–183. doi:10.1016/j.compag.2012.09.006
  • Mendoza, M., Succi, S., & Herrmann, H. J. (2013). Flow through randomly curved manifolds. Scientific Reports, 3. doi:Artn310610.1038/Srep03106
  • Mitsoulis, E. (2007). Flows of viscoplastic materials: Models and computations. Rheology Reviews, 135–178.
  • Neofytou, P. (2005). A 3rd order upwind finite volume method for generalised Newtonian fluid flows. Advances in Engineering Software, 36(10), 664–680. 10.1016/j.advengsoft.2005.03.011
  • Owen, D. R. J., Leonardi, C. R., & Feng, Y. T. (2011). An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries. International Journal for Numerical Methods in Engineering, 87(1–5), 66–95. doi:10.1002/nme.2985
  • Ozmen-Cagatay, H., & Kocaman, S. (2011). Dam-break flow in the presence of obstacle: experiment and CFD simulation. Engineering Applications of Computational Fluid Mechanics, 5(4), 541–552.
  • Papanastasiou, T. C., & Boudouvis, A. G. (1997). Flows of viscoplastic materials: Models and computations. Computers & Structures, 64(1–4), 677–694. 10.1016/S0045-7949(96)00167-8
  • Prashant, A. G, & Derksen, J. J. (2011). Direct simulations of spherical particle motion in Bingham liquids. Computers & Chemical Engineering, 35(7), 1200–1214. 10.1016/j.compchemeng.2010.09.002
  • Riddle, A., Carruthers, D., Sharpe, A., McHugh, C., & Stocker, J. (2004). Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmospheric Environment, 38(7), 1029–1038. doi:10.1016/j.atmosenv.2003.10.052
  • Roussel, N. (2006). A theoretical frame to study stability of fresh concrete. Materials and Structures, 39(1), 81–91. doi:10.1617/s11527-005-9036-1
  • Tezduyar, T. E. (2001). Finite element methods for flow problems with moving boundaries and interfaces. Archives of Computational Methods in Engineering, 8(2), 83–130. doi:10.1007/Bf02897870
  • Tezduyar, T. E., Takizawa, K., Moorman, C., Wright, S., & Christopher, J. (2010). Space-time finite element computation of complex fluid-structure interactions. International Journal for Numerical Methods in Fluids, 64(10–12), 1201–1218. doi:10.1002/fld.2221
  • Vikhansky, A. (2008). Lattice-Boltzmann method for yield-stress liquids. Journal of Non-Newtonian Fluid Mechanics, 155(3), 95–100. doi:10.1016/j.jnnfm.2007.09.001
  • Wang, J., Zhang, X., Bengough, A. G., & Crawford, J. W. (2005). Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media. Physical Review E, 72(1), 16706. 10.1103/PhysRevE.72.016706
  • Xu, Y. Y., Yuan, J. Q., Repke, J. U., & Wozny, G. (2012). Cfd study on liquid Flow behavior on inclined flat plate focusing on effect of flow rate. Engineering Applications of Computational Fluid Mechanics, 6(2), 186–194.
  • Yoshino, M., Hotta, Y., Hirozane, T., & Endo, M. (2007). A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. Journal of Non-Newtonian Fluid Mechanics, 147(1–2), 69–78. 10.1016/j.jnnfm.2007.07.007
  • Zou, Q. S., & He, X. Y. (1997). On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9(6), 1591–1598. doi:10.1063/1.869307