3,007
Views
25
CrossRef citations to date
0
Altmetric
Review Articles

Numerical simulations of the mean wind speeds and turbulence intensities over simplified gorges using the SST k-ω turbulence model

, , , &
Pages 359-372 | Received 06 Nov 2015, Accepted 21 Mar 2016, Published online: 29 Apr 2016

References

  • Aldas, K., & Yapici, R. (2014). Investigation of effects of scale and surface roughness on efficiency of water jet pumps using CFD. Engineering Applications of Computational Fluid Mechanics, 8(1), 14–25. doi: 10.1080/19942060.2014.11015494
  • Blocken, B., Carmeliet, J., & Stathopoulos, T. (2007). CFD evaluation of wind speed conditions in passages between parallel buildings—Effect of wall-function roughness modifications for the atmospheric boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, 95(9–11), 941–962. doi: 10.1016/j.jweia.2007.01.013
  • Blocken, B., Stathopoulos, T., & Carmeliet, J. (2007). CFD simulation of the atmospheric boundary layer: Wall function problems. Atmospheric Environment, 41(2), 238–252. doi: 10.1016/j.atmosenv.2006.08.019
  • Bullard, J. E., Wiggs, G. F. S., & Nash, D. J. (2000). Experimental study of wind directional variability in the vicinity of a model valley. Geomorphology, 35(1–2), 127–143. doi: 10.1016/S0169-555X(00)00033-7
  • Cao, S., & Tamura, T. (2006). Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional. Journal of Wind Engineering and Industrial Aerodynamic, 94(1), 1–19. doi: 10.1016/j.jweia.2005.10.001
  • Cao, S., & Tamura, T. (2007). Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change. Journal of Wind Engineering and Industrial Aerodynamics, 95, 679–695. doi: 10.1016/j.jweia.2007.01.002
  • Cao, S., Wang, T., Ge, Y., & Tamura, Y. (2012). Numerical study on turbulent boundary layers over two-dimensional hills-effects of surface roughness and slope. Journal of Wind Engineering and Industrial Aerodynamic, 104–106, 342–349. doi: 10.1016/j.jweia.2012.02.022
  • Casella, L., Langreder, W., Fischer, A., Ehlen, M., & Skoutelakos, D. (2014). Dynamic flow analysis using an OpenFOAM based CFD tool: Validation of turbulence intensity in a testing site. ITM Web of Conferences 2, 1–12.
  • CCCC Highway Consultants. (2004). Wind-resistent design specification for highway bridges. Commendatory trade standards of the People’s Republic of China, Beijing. (in Chinese)
  • Derickson, R. G., & Peterka, J. A. (2004). Development of a powerful hybrid tool for evaluating wind power in complex terrain: atmospheric numerical models and wind tunnels. 42nd AIAA Aerospace Sciences Meeting and Exhibit. 5–8 January 2004, Reno, USA.
  • Fluent. (2006). Fluent 6.3 user’s guide. Lebanon, New Hampshire: Fluent Inc.
  • Gao, Y., & Chow, W. K. (2005). Numerical studies on air flow around a cube. Journal of Wind Engineering and Industrial Aerodynamics, 93(2), 115–135. doi: 10.1016/j.jweia.2004.11.001
  • Hu, P., Li, Y. L., Cai, C. S., Liao, H. L., & Xu, G. J. (2013). Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-omega turbulence model. Wind and Structures, 17(1), 87–105. doi: 10.12989/was.2013.17.1.087
  • Hu, P., Li, Y. L., Huang, G. Q., Kang, R., & Liao, H. L. (2015). The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test. Wind and Structures, 20(1), 15–36. doi: 10.12989/was.2015.20.1.015
  • Iizuka, S., & Kondo, H. (2004). Performance of various sub-grid scale models in large-eddy simulations of turbulent flow over complex terrain. Atmospheric Environment, 38, 7083–7091. doi: 10.1016/j.atmosenv.2003.12.050
  • Iizuka, S., & Kondo, H. (2006). Large-eddy simulations of turbulent flow over complex terrain using modified static eddy viscosity models. Atmospheric Environment, 40, 925–935. doi: 10.1016/j.atmosenv.2005.10.014
  • Kim, H. G., Patel, V. C., & Lee, C. M. (2000). Numerical simulation of wind flow over hilly terrain. Journal of Wind Engineering and Industrial Aerodynamic, 87(1), 45–60. doi: 10.1016/S0167-6105(00)00014-3
  • Lakehal, D. (1998). Application of the k-ε model to flow over a building placed in different roughness sublayers. Journal of Wind Engineering and Industrial Aerodynamics, 73(1), 59–77. doi: 10.1016/S0167-6105(97)00279-1
  • Li, C. G., Chen, Z. Q., Zhang, Z. T., & Cheung, J. C. K. (2010). Wind tunnel modeling of flow over mountainous valley terrain. Wind and Structures, 13(3), 275–292. doi: 10.12989/was.2010.13.3.275
  • Liu, Z. (2012). Investigation of flow characteristics around square cylinder with inflow turbulence. Engineering Applications of Computational Fluid Mechanics, 6(3), 426–446. doi: 10.1080/19942060.2012.11015433
  • Li, Y. L., Hu, P., Cai, X. T., Tang, K., & Liao, H. L. (2011). Spatial distribution feature of wind fields over bridge site with a deep-cutting gorge by numerical simulation method. The 13th International Conference on Wind Engineering. 10–15 July 2011, Amsterdam, Netherlands.
  • Maurizi, A., Palma, J. M. L. M., & Castro, F. A. (1998). Numerical simulation of the atmospheric flow in a mountainous region of the North of Portugal. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 219–228. doi: 10.1016/S0167-6105(98)00019-1
  • Miller, C. A., & Davenport, A. G. (1998). Guidelines for the calculation of wind speed-ups in complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 189–197. doi: 10.1016/S0167-6105(98)00016-6
  • OriginLab Corporation. (2010). Origin reference for origin 8.5 SR1. Northampton, Massachusetts, USA.
  • Ramponi, R., & Blocken, B. (2012). CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Building and Environment, 53, 34–48. doi: 10.1016/j.buildenv.2012.01.004
  • Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 46–47, 145–153. doi: 10.1016/0167-6105(93)90124-7
  • Sierputowskia, P., Ostrowskia, J., & Cenedeseb, A. (1995). Experimental study of wind flow over the model of a valley. Journal of Wind Engineering and Industrial Aerodynamics, 57(2–3), 127–136. doi: 10.1016/0167-6105(95)00009-G
  • Simiu, E., & Scanlan, R. H. (1996). Wind effects on structures: Fundamentals and applications to design (3th ed.). New York, USA: Wiley.
  • Tamura, T., Okuno, A., & Sugio, Y. (2007). LES analysis of turbulent boundary layer over 3D steep hill covered with vegetation. Journal of Wind Engineering and Industrial Aerodynamic, 95(9–11), 1463–1475. doi: 10.1016/j.jweia.2007.02.014
  • Uchida, T., & Ohya, Y. (2003). Large-eddy simulation of turbulent airflow over complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 91(1–2), 219–229. doi: 10.1016/S0167-6105(02)00347-1
  • Wan, F., Porté-Agel, F., & Stoll, R. (2007). Evaluation of dynamic subgrid-scale models in large-eddy simulations of neutral turbulent flow over a two-dimensional sinusoidal hill. Atmospheric Environment, 41, 2719–2728. doi: 10.1016/j.atmosenv.2006.11.054
  • Yang, W., Quan, Y., Jin, X., Tamura, Y., & Gu, M. (2008). Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise building. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 2080–2092. doi: 10.1016/j.jweia.2008.02.014
  • Yang, Y., Gu, M., Chen, S., & Jin, X. (2009). New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 97(2), 88–95. doi: 10.1016/j.jweia.2008.12.001
  • Zheng, D. Q., Zhang, A. S., & Gu, M. (2012). Improvement of inflow boundary condition in large eddy simulation of flow around tall building. Engineering Applications of Computational Fluid Mechanics, 6(4), 633–647. doi: 10.1080/19942060.2012.11015448
  • Zhu, L. D., Ren, P. J., Chen, W., Zhou, C., & Wang, J. Q. (2011). Investigation on wind profiles in the deep gorge at the Balinghe bridge site via field measurement. Journal of Experiments in Fluid Mechanic, 25(4), 15–21. (in Chinese)