2,059
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Rotor wake and flow analysis using a coupled Eulerian–Lagrangian method

, &
Pages 384-402 | Received 02 Oct 2015, Accepted 02 Apr 2016, Published online: 20 May 2016

References

  • Ahmad, J., & Duque, E. P. N. (1996). Helicopter rotor blade computation in unsteady flows using moving overset grids. Journal of Aircraft, 33(1), 54–60. doi: 10.2514/3.46902
  • Bagai, A., & Leishman, J. G. (1995). Rotor free wake modeling using a pseudo implicit technique including comparisons with experimental data. Journal of the American Helicopter Society, 40(3), 29–41. doi: 10.4050/JAHS.40.29
  • Bhagwat, M. J., Moulton, M. A., & Caradonna, F. X. (2007). Development of a CFD-based hover performance prediction tool for engineering analysis. Journal of the American Helicopter Society, 52(3), 175–188. doi: 10.4050/JAHS.52.175
  • Bhagwat, M. J., Ormiston, R. A., Saberi, H. A., & Xin, H. (2012). Application of computational fluid dynamics/computational structural dynamics coupling for analysis of rotorcraft airloads and blade loads in maneuvering flight. Journal of American Helicopter Society, 57(3), 1–21. doi: 10.4050/JAHS.57.032007
  • Biava, M., Bindolino, G., & Vigevano, L. (2003). Single blade computations of helicopter rotors in forward flight. Proceedings of 41st Aerospace Sciences Meeting & Exhibit, Reno, Nevada, Jan 6–9, 2003.
  • Brown, R. E., & Line, A. J. (2005). Efficient high-resolution wake modeling using the vorticity transport equation. AIAA Journal, 43(7), 1434–1443. doi: 10.2514/1.13679
  • Caradonna, F. X., & Tung, C. (1981). Expermiental and analytical studies of a model helicopter rotor in hover. Vertical, 5(1), 149–161.
  • Cheng, H., Greengard, L., & Rokhlin, L. (1999). A fast adaptive multipole algorithm in three dimensions. Journal of Computational Physics, 155(2), 468–498. doi: 10.1006/jcph.1999.6355
  • Chorin, A. J. (1973). Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57(04), 785–796. doi: 10.1017/S0022112073002016
  • Dimanlig, A., Jayaraman, B., Lim, J., & Wissink, A. (2012). Application of adaptive mesh refinement technique in helios to blade-vortex interaction loading and rotor wakes. Proceeding of 68th Annual Forum of the American Helicopter Society, 2012.
  • Duraisamy, K., & Bader, J. D. (2007). High resolution wake capturing methodology for hoving rotors. Journal of the American Helicopter Society, 52(2), 110–122. doi: 10.4050/JAHS.52.110
  • Eldredge, J. D., Leonard, A., & Colonius, T. (2002). A general deterministic treatment of derivatives in particle methods. Journal of Computational Physics, 180(2), 686–709. doi: 10.1006/jcph.2002.7112
  • Elliott, J., Althoff, S., & Sailey, R. (1988). Inflow measurement made with a laser velocimeter on a helicopter model in forward flight. Volume 2: Rectangular planform blades at an advance ratio of 0. 23. NASA-TM 100542, 1988.
  • Fan, F., Xu, G. H., Shi, & Y. J. (2014). Calculations of unsteady aerodynamic interaction between main-rotor and tail-rotor of helicopters based on CFD method. Journal of Aerospace Power, 29(11), 2633–2642. (in Chinese).
  • Harris, R. E., Sheta, E. F., & Habchi, S. D. (2010). Efficient adaptive Cartesian vorticity transport slover for vortex –domintated flows. AIAA Journal, 48(9), 2157–2164. doi: 10.2514/1.J050472
  • He, C. J., & Zhao, J. G. (2009). Modeling rotor wake dynamics with viscous vortex particle method. AIAA Journal, 47(4), 902–915. doi: 10.2514/1.36466
  • Kang, H. J., & Kwon, O. J. (2002). Unstructured mesh Navier-Stokes calculations of the flow field of a helicopter rotor in hover. Journal of the American Helicopter Society, 47(2), 90–99. doi: 10.4050/JAHS.47.90
  • Komerath, N. M., Smith, M. J., & Tung, C. (2011). A review of rotor wake physics and modeling. Journal of the American Helicopter Society, 56(2), 220061–2200619. doi: 10.4050/JAHS.56.022006
  • Kufeld, R. M., & Bousman, W. G. (2005). UH-60A air-loads program azimuth reference correction. Technical Note, Journal of the American Helicopter Society, 50(2), 211–213. doi: 10.4050/1.3092857
  • Liu, H. J., Yang, H. O., Wu, Y. D., Tian, J., & Du, Z. H. (2014). Investigation of unsteady flows and noise in rotor-stator interaction with adjustable lean vane. Engineering Applications of Computational Fluid Mechanics, 8(2), 299–307. doi: 10.1080/19942060.2014.11015515
  • Luo, H., & Baum, J. D. (1999). A fast, matrix-free implicit method for computing low mach number flows on unstructured grids. American Institute of Aeronautics and Astronautics. Index no. 3315.
  • Roe, P. L. (1981). Approximate riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357–372. doi: 10.1016/0021-9991(81)90128-5
  • Shi, Y. J., Zhao, Q. J., Fan, & F., Xu, G. H. (2011). A new single-blade based hybrid CFD method for hovering and forward-flight rotor computation. Chinese Journal of Aeronautics, 24(2), 127–135. doi: 10.1016/S1000-9361(11)60016-2
  • Sitaraman, J., & Bader, J. (2006). Evalution of the wake prediction methodologies used in CFD based rotor airload computations. American Institute of Aeronautics and Astronautics. Index no. 3472.
  • Spalart, P. R., & Allmaras, S. R. (1992). An one-equation turbulence model for aerodynamic flows. American Institute of Aeronautics and Astronautics. Index no. 0439.
  • Strawn, R. C., Caradonna, F. X., & Duque, E. P. N. (2006). 30 years rotorcraft computational fluid Dynamics research and development. Journal of the American Helicopter Society, 51(1), 5–21. doi: 10.4050/1.3092875
  • Tan, J. F., & Wang, H. H. (2013). Simulation unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method. Aerospace and Science and Technology, 30, 255–268. doi: 10.1016/j.ast.2013.08.010
  • Wang, B., Zhao, Q. J., Xu, G. H., & Ye, L. (2013). Numerical analysis on noise of rotor with new type blade-tips based on CFD/Kirchhoff method. Chinese Journal of Aeronautics, 26(3), 572–582. doi: 10.1016/j.cja.2013.04.045
  • Wei, P., Shi, Y. J., Xu, G. H., & Zhao, Q. J. (2012). Numerical method for simulating rotor flow field based upon viscous vortex model. Acta Aeronautica et Astronatica Sinica, 33(5), 771–780. (in Chinese).
  • Wie, S. Y., Im, D. K., Kwon, J. H., & Lee, D. J. (2010). Numerical simulation of rotor using coupled computational fluid dynamics and free wake. Journal of Aircraft, 47(4), 1167–1177. doi: 10.2514/1.46797
  • Yang, Z., Sankar, L. N., & Smith, M. J. (2002). Recent improvements to a hybrid method for rotors in forward flight. Journal of Aircraft, 39(5), 804–812. doi: 10.2514/2.3000
  • Ye, L., Zhao, Q. J., & Xu, G. H. (2009). Numerical simulation of flowfield of helicopter rotor and fuselage in forward flight based on unstructured embedded grid technique. Journal of Aerospace Power, 24(4), 903–910. (in Chinese).
  • Zhao, Q. J., Xu, G. H., & Zhao, J. G. (2005). Numerical simulations of the unsteady flowfield of helicopter rotors on moving embedded grids. Aerospace Science and Technology, 9(2), 117–124. doi: 10.1016/j.ast.2004.10.004