1,011
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Flow dynamical behavior and performance of a micro viscous pump with unequal inlet and outlet areas

, , &
Pages 441-451 | Received 28 Sep 2015, Accepted 27 Apr 2016, Published online: 17 Jun 2016

References

  • Abdelgawad, M., Hassan, I., & Esmail, N. (2004). Transient behavior of the viscous micropump. Microscale Thermophysical Engineering, 8(8), 361–381. doi: 10.1080/10893950490516901
  • Blanchard, D., & Ligrani, P. (2006). Comparisons of different viscous pumps based on physical flow behavior. Sensors and Actuators A: Physical, 126(126), 83–92. doi: 10.1016/j.sna.2005.09.022
  • Blanchard, D., Ligrani, P., & Gale, B. (2005). Single-disk and double-disk viscous micropumps. Sensors and Actuators A: Physical, 122(1), 149–158. doi: 10.1016/j.sna.2005.03.072
  • Blanchard, D., Ligrani, P., & Gale, B. (2006). Miniature single-disk viscous pump (Single-DVP), performance characterization. Journal of Fluids Engineering, 128(3), 602–610. doi: 10.1115/1.2175167
  • Choi, H. I., Lee, Y., Choi, D. H., & Maeng, J. S. (2010). Design optimization of a viscous micropump with two rotating cylinders for maximizing efficiency. Structural and Multidisciplinary Optimization, 40(1-6), 537–548. doi: 10.1007/s00158-009-0373-5
  • Decourtye, D., Sen, M., & Gad-El-Hak, M. (1998). Analysis of viscous micropumps and microturbines. International Journal of Computational Fluid Dynamics, 10(1), 13–25. doi: 10.1080/10618569808961670
  • Geipel, A., Doll, A., Jantscheff, P., Esser, N., Massing, U., & Woias, P. (2007). A novel two-stage backpressure-independent micropump: Modeling and characterization. Journal of Micromechanics and Microengineering, 17(5), 949–959. doi: 10.1088/0960-1317/17/5/015
  • Haik, Y., Kilani, M., Hendrix, J., Rifai, O. A., & Galambos, P. (2007). Flow field analysis in a spiral viscous micropump. Microfluidics and Nanofluidics, 3(5), 527–535. doi: 10.1007/s10404-006-0143-2
  • Iverson, B. D., & Garimella, S. V. (2008). Recent advances in microscale pumping technologies: A review and evaluation. Microfluidics and Nanofluidics, 5(2), 145–174. doi: 10.1007/s10404-008-0266-8
  • Jian, Y., Si, D., Chang, L., & Liu, Q. (2015). Transient rotating electromagnetohydrodynamic micropumps between two infinite microparallel plates. Chemical Engineering Science, 134, 12–22. doi: 10.1016/j.ces.2015.04.036
  • Kang, D. J. (2014). Effects of channel curvature on the performance of viscous micro-pumps. Journal of Mechanical Science and Technology, 28(9), 3733–3740. doi: 10.1007/s12206-014-0834-7
  • Kilani, M. I., & Al-Salaymeh, A. (2007). Simple analytical expressions for the flow performance of a spiral-channel viscous micropump. Fluid Dynamics Research, 39(8), 632–646. doi: 10.1016/j.fluiddyn.2007.02.002
  • Kim, J. H., Na, K. H., Kang, C. H., & Kim, Y. S. (2005). A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass. Sensors and Actuators A: Physical, 120(2), 365–369. doi: 10.1016/j.sna.2004.12.024
  • Laser, D. J., & Santiago, J. G. (2004). A review of micropumps. Journal of Micromechanics and Microengineering, 14(6), R35–R64. doi: 10.1088/0960-1317/14/6/R01
  • Leontidis, V., Chen, J., Baldas, L., & Colin, S. (2014). Numerical design of a knudsen pump with curved channels operating in the slip flow regime. Heat and Mass Transfer, 50(8), 1065–1080. doi: 10.1007/s00231-014-1314-4
  • Lu, J., & Ding, J. (2010). Flow dynamical behaviors and characteristics of aligned and staggered viscous pumps. International Journal of Heat and Mass Transfer, 53, 2092–2099. doi: 10.1016/j.ijheatmasstransfer.2009.12.046
  • Lu, J., Jing, D., Yang, J., & Yang, X. (2014). Steady dynamical behaviors of novel viscous pump with groove under the rotor. International Journal of Heat and Mass Transfer, 73(4), 170–176. doi: 10.1016/j.ijheatmasstransfer.2014.02.004
  • Mainland, M., & Green, I. (1992). Analysis and optimization of semi-circular and straight lobe viscous pumps. Journal of Tribology, 114(3), 515–521. doi: 10.1115/1.2920913
  • Martín-Alcántara, A., Sanmiguel-Rojas, E., & Fernandez-Feria, R. (2015). On the development of lift and drag in a rotating and translating cylinder. Journal of Fluids and Structures, 54, 868–885. doi: 10.1016/j.jfluidstructs.2015.02.002
  • Phutthavong, P., & Hassan, I. (2004). Transient performance of flow over a rotating object placed eccentrically inside a microchannel?numerical study. Microfluidics and Nanofluidics, 1(1), 71–85. doi: 10.1007/s10404-004-0006-7
  • Pramod, K., & Sen, A. K. (2014). Flow and heat transfer analysis of an electro-osmotic flow micropump for chip cooling. Journal of Electronic Packaging, 136(3), 031012. doi: 10.1115/1.4027657
  • Rao, A., Thompson, M. C., Leweke, T., & Hourigan, K. (2015). Flow past a rotating cylinder translating at different gap heights along a wall. Journal of Fluids and Structures, 57, 314–330. doi: 10.1016/j.jfluidstructs.2015.06.015
  • Sen, M., Wajerski, D., & Gad-el-Hak, M. (1996). A novel pump for MEMS applications. Journal of Fluids Engineering, 118(3), 624–627. doi: 10.1115/1.2817807
  • Sharatchandra, M. C., Sen, M., & Gad-el-Hak, M. (1997). Navier-Stokes simulations of a novel viscous pump. Journal of Fluids Engineering, 119(2), 372–382. doi: 10.1115/1.2819144
  • Sharatchandra, M. C., Sen, M., & Gad-el-Hak, M. (1998). Thermal aspects of a novel viscous pump. Journal of Heat Transfer, 120(1), 99–107. doi: 10.1115/1.2830071
  • Silva, A. K., Kobayashi, M. H., & Coimbra, C. F. M. (2007). Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption. International Journal of Heat and Fluid Flow, 28(3), 526–536. doi: 10.1016/j.ijheatfluidflow.2006.07.005
  • Wang, B. T., Okamoto, K., Yamaguchi, K., & Teramoto, S. (2014). Loss mechanisms in shear-force pump with multiple co-rotating disks. Journal of Fluids Engineering, 136(8), 52–68. doi: 10.1115/1.4026585
  • Yin, Z., & Prosperetti, A. (2005). ‘Blinking bubble’ micropump with microfabricated heaters. Journal of Micromechanics and Microengineering, 15(9), 1683–1691. doi: 10.1088/0960-1317/15/9/010
  • Yokota, K., Sato, K., & Itoh, M. (2006). Model experiment, numerical simulation and theoretical analysis on the characteristics of a viscous micropump using a cylindrical rotor in a rectangular duct. JSME International Journal Series B, 49, 393–400. doi: 10.1299/jsmeb.49.393
  • Yun, K. S., Cho, I. J., Bu, J. U., Kim, C. J., & Yoon, E. (2002). A surface-tension driven micropump for low-voltage and low-power operations. Journal of Microelectromechanical Systems, 11(5), 454–461. doi: 10.1109/JMEMS.2002.803286
  • Zhang, C., Da, X., & Li, Y. (2007). Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnology Advances, 25(5), 483–514. doi: 10.1016/j.biotechadv.2007.05.003
  • Zhang, T., & Wang, Q. M. (2005). Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices. Journal of Power Sources, 140(1), 72–80. doi: 10.1016/j.jpowsour.2004.07.026