1,140
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Comment on the level-set method used in ‘Numerical study on mobilization of oil slugs in capillary model with level set approach’

Pages 466-472 | Received 13 Oct 2015, Accepted 18 May 2016, Published online: 27 Jun 2016

References

  • Balay S., Gropp W. D., McInnes L. C., & Smith B. F. (1997). Efficient management of parallelism in object-oriented numerical software libraries. In E. Arge, A. M. Bruaset, & H. P. Langtangen (Eds.), Modern software tools for scientific computing (pp. 163–202). New York: Springer.
  • Brackbill J. U., Kothe D. B., & Zemach C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100, 335–354. doi: 10.1016/0021-9991(92)90240-Y
  • Chandra S., & Batur C. (2010). Contact angle manipulation for micro gripping. Engineering Applications of Computational Fluid Mechanics, 4, 181–195. doi: 10.1080/19942060.2010.11015309
  • Chorin A. J. (1968). Numerical solution of the Navier–Stokes equations. Mathematics of Computation, 22, 745–762. doi: 10.1090/S0025-5718-1968-0242392-2
  • Dai L., & Wang X. (2014). Numerical study on mobilization of oil slugs in capillary model with level set approach. Engineering Applications of Computational Fluid Mechanics, 8, 422–434. doi: 10.1080/19942060.2014.11015526
  • Della Rocca G., & Blanquart G. (2014). Level set reinitialization at a contact line. Journal of Computational Physics, 265, 34–49. doi: 10.1016/j.jcp.2014.01.040
  • Ding H., & Spelt P. D. M. (2007). Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75(4), 046708.
  • Eça L., & Hoekstra M. (2009). Evaluation of numerical error estimation based on grid refinement studies with the method of the manufactured solutions. Computers & Fluids, 38, 1580–1591. doi: 10.1016/j.compfluid.2009.01.003
  • Ervik A., Lervåg K. Y., & Munkejord S. T. (2014). A robust method for calculating interface curvature and normal vectors using an extracted local level set. Journal of Computational Physics, Part A, 257, 259–277. doi: 10.1016/j.jcp.2013.09.053
  • Gottlieb S., Ketcheson D. I., & Shu C.-W. (2009). High order strong stability preserving time discretizations. Journal of Scientific Computing, 38, 251–289. doi: 10.1007/s10915-008-9239-z
  • Guermond J. L., Minev P., & Shen J. (2006). An overview of projection methods for incompressible flows. Computer Methods in Applied Mechanics and Engineering, 195, 6011–6045. doi: 10.1016/j.cma.2005.10.010
  • Hartmann D., Meinke M., & Schröder W. (2010). The constrained reinitialization equation for level set methods. Journal of Computational Physics, 229, 1514–1535. doi: 10.1016/j.jcp.2009.10.042
  • Kang M., Fedkiw R. P., & Liu X.-D. (2000). A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing, 15, 323–360. doi: 10.1023/A:1011178417620
  • Morrow N. R., & Mason G. (2001). Recovery of oil by spontaneous imbibition. Current Opinion in Colloid & Interface Science, 6, 321–337. doi: 10.1016/S1359-0294(01)00100-5
  • Mumley T. E., Radke C. J., & Williams M. C. (1986). Kinetics of liquid/liquid capillary rise: I. Experimental observations. Journal of Colloid and Interface Science, 109, 398–412. doi: 10.1016/0021-9797(86)90318-8
  • Navier C.-L. (1823). Mémoire sur les lois du mouvement des fluides. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6, 389–440.
  • Oberkampf W. L., & Trucano T. G. (2002). Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences, 38, 209–272. doi: 10.1016/S0376-0421(02)00005-2
  • Osher S., & Fedkiw R. P. (2001). Level set methods: An overview and some recent results. Journal of Computational Physics, 169, 463–502. doi: 10.1006/jcph.2000.6636
  • Osher S., & Sethian J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49. doi: 10.1016/0021-9991(88)90002-2
  • Shu C.-W., & Osher S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77, 439–471. doi: 10.1016/0021-9991(88)90177-5
  • Teigen K. E. (2010). Development and use of interface-capturing methods for investigation of surfactant-covered drops in electric fields (Unpublished doctoral dissertation). Norwegian University of Science and Technology, Trondheim, Norway.
  • Teigen K. E., Lervåg K. Y., & Munkejord S. T. (2010). Sharp interface simulations of surfactant-covered drops in electric fields. Paper presented at the Fifth European conference on computational fluid dynamics, ECCOMAS CFD 2010, Lisbon, Portugal, June.
  • Teigen K. E., & Munkejord S. T. (2009). Sharp-interface simulations of drop deformation in electric fields. IEEE Transactions on Dielectrics and Electrical Insulation, 16, 475–482. doi: 10.1109/TDEI.2009.4815181
  • Teigen K. E., & Munkejord S. T. (2010). Influence of surfactant on drop deformation in an electric field. Physics of Fluids, 22:112104. doi: 10.1063/1.3504271