2,014
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Numerical modeling of oscillating Taylor bubbles

, &
Pages 578-598 | Received 07 Mar 2016, Accepted 11 Aug 2016, Published online: 20 Sep 2016

References

  • Abdulkadir, M., Hernandez-Perez, V., & Azzopardi, B. (2011). Grid generation issues in the CFD modeling of two-phase flow in a pipe. The Journal of Computational Multiphase Flows, 3(1), 242–252.
  • ANSYS. (n.d.). ANSYS-FLUENT. Pittsburgh, PA: Ansys, Inc.
  • Araujo, J. D. P., Miranda, J. M., Pinto, A. M. F. R., & Campos, J. B. L. M. (2012). Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids. International Journal of Multiphase Flow, 43, 131–148. doi: 10.1016/j.ijmultiphaseflow.2012.03.007
  • Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100, 335–354. doi: 10.1016/0021-9991(92)90240-Y
  • Brown, R. A. S. (1965). The mechanics of large gas bubbles in tubes. Canadian Journal of Chemical Engineering, 43, 217–223. doi: 10.1002/cjce.5450430501
  • Davies, R. M., & Taylor, G. I. (1950). The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 200, 375–390. doi: 10.1098/rspa.1950.0023
  • Dumitrescu, D. T. (1943). Strömung an einer Luftblase im Senkrechten Rohr. Zeitschrift für Angewandte Mathematik and Mechanik, 23(3), 139–149. doi: 10.1002/zamm.19430230303
  • Ghosh, S., Patil, P., Mishra, S. C., Das, A. K., & Das, P. K. (2012). 3-d lattice Boltzmann model for asymmetric Taylor bubble and Taylor drop in inclined channel. Engineering Applications of Computational Fluid Mechanics, 6(3), 383–394. doi: 10.1080/19942060.2012.11015429
  • Hayashi, K., Hosoda, S., Tryggvason, G., & Tomiyama, A. (2014). Effects of shape oscillation on mass transfer from a Taylor bubble. International Journal of Multiphase Flow, 58, 236–245. doi: 10.1016/j.ijmultiphaseflow.2013.09.009
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201–225. doi: 10.1016/0021-9991(81)90145-5
  • James, M. R., Lane, S. J., Chouet, B., & Gilbert, J. S. (2004). Pressure changes associated with the ascent and bursting of gas slugs in liquid-filled vertical and inclined conduits. Journal of Volcanology and Geothermal Research, 129, 61–82. doi: 10.1016/S0377-0273(03)00232-4
  • James, M. R., Lane, S. J., & Corder, S. B. (2008). Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas. Geological Society, London, Special Publications, 307, 147–167. doi: 10.1144/SP307.9
  • James, M. R., Llewellin, E. W., & Lane, S. J. (2011). Comment on: It takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modeling normal Strombolian activity. Journal of Geophysical Research, 116, 1–5. Article no. B06207.
  • Kang, C. W., Quan, S., & Lou, J. (2010). Numerical study of a Taylor bubble rising in stagnant liquids. Physical Review E, 81. doi: 10.1103/PhysRevE.81.066308.
  • Ku, D. N. (1997). Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1), 399–434. doi: 10.1146/annurev.fluid.29.1.399
  • Lu, X., & Prosperetti, A. (2009). A numerical study of Taylor bubbles. Industrial and Engineering Chemistry Research, 48(1), 242–252. doi: 10.1021/ie800201x
  • Marschall, H., Hinrichsen, O., & Polifke, W. (2008). Numerische Simulation von Mehrphasenreaktoren mittels hybridem CFD-Modell in OpenFOAM (HIRES-TFM). Chemie Ingenieur Technik, 80(9), 1303–1303. doi: 10.1002/cite.200750548
  • MATLAB. (2012). MATLAB Release 2012a. Natick, MA: The Mathworks Inc.
  • Ndinisa, N. V., Wiley, D. E., & Fletcher, D. F. (2005). Computational fluid dynamics simulations of Taylor bubbles in tubular membranes: Model validation and application to laminar flow systems. Chemical Engineering Research and Design, 83(1), 40–49. doi: 10.1205/cherd.03394
  • Nogueira, S., Riethmuler, M. L., Campos, J. B. L. M., & Pinto, A. M. F. R. (2006a). Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids. Chemical Engineering Science, 61(2), 845–857. doi: 10.1016/j.ces.2005.07.038
  • Nogueira, S., Riethmuller, M. L., Campos, J. B. L. M., & Pinto, A. M. F. R. (2006b). Flow patterns in the wake of a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids: An experimental study. Chemical Engineering Science, 61, 7199–7212. doi: 10.1016/j.ces.2006.08.002
  • Oguz, H. N., & Prosperetti, A. (1998). The natural frequency of oscillation of gas bubbles in tubes. The Journal of the Acoustical Society of America, 103(6), 3301–3308. doi: 10.1121/1.423043
  • Parfitt, E. A. (2004). A discussion of the mechanisms of explosive basaltic eruptions. Journal of Volcanology and Geothermal Research, 134, 77–107. doi: 10.1016/j.jvolgeores.2004.01.002
  • Polonsky, S., Barnea, D., & Shemer, L. (1999). Averaged and time-dependent characteristics of the motion of an elongated bubble in a vertical pipe. International Journal of Multiphase Flow, 25(5), 795–812. doi: 10.1016/S0301-9322(98)00066-4
  • Pringle, C. C. T., Ambrose, S., Azzopardi, B. J., & Rust, A. C. (2015). The existence and behaviour of large diameter Taylor bubbles. International Journal of Multiphase Flow, 72, 318–323. doi: 10.1016/j.ijmultiphaseflow.2014.04.006
  • Roache, P. (1998). Verification and validation in computational science and engineering. Albuquerque, NM: Hermosa.
  • Sawko, R., & Thompson, C. (2010). Estimation of rate of strain magnitude and average viscosity in turbulent flow of shear thinning and yield stress fluids. International Conference of Numerical Analysis and Applied Mathematics.
  • Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new eddy viscosity model for high Reynolds number turbulent flows. Computers and Fluids, 24(3), 227–238. doi: 10.1016/0045-7930(94)00032-T
  • Suckale, J., Nave, J.-C., & Hager, B. H. (2010). It takes three to tango: 1. Simulating buoyancy-driven flow in the presence of large viscosity contrasts. Journal of Geophysical Research, 115, 1–16. Article no. B07409.
  • Taha, T., & Cui, Z. F. (2004). Hydrodynamics of slug flow inside capillaries. Chemical Engineering Science, 59, 1181–1190. doi: 10.1016/j.ces.2003.10.025
  • van Hout, R., Gulitski, A., Barnea, D., & Shemer, L. (2002). Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water. International Journal of Multiphase Flow, 28, 579–596. doi: 10.1016/S0301-9322(01)00082-9
  • Vergniolle, S., Brandeis, G., & Mareschal, J.-C. (1996). Strombolian explosions: 2. Eruption dynamics determined from acoustic measurements. Journal of Geophysical Research: Solid Earth, 101(9), 20449–20466. doi: 10.1029/96JB01925
  • Viana, F., Pardo, R., Yanez, R., Trallero, J. L., & Joseph, D. D. (2003). Universal correlation for the rise velocity of long gas bubbles in round pipes. Journal of Fluid Mechanics, 494, 379–398. doi: 10.1017/S0022112003006165
  • White, E. T., & Beardmore, R. H. (1962). The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes. Chemical Engineering Science, 17, 351–361. doi: 10.1016/0009-2509(62)80036-0
  • Womersley, J. R. (1955). Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. The Journal of Physiology, 127(3), 553–563. doi: 10.1113/jphysiol.1955.sp005276
  • Yan, K., Zhang, Y., & Che, D. (2012). Experimental study on near wall transport characteristics of slug flow in a vertical pipe. Heat and Mass Transfer, 48(7), 1193–1205. doi: 10.1007/s00231-012-0969-y
  • Yang, Z. L., Palm, B., & Sehgal, B. R. (2002). Numerical simulation of bubbly two-phase flow in a narrow channel. International Journal of Heat and Mass Transfer, 45(3), 631–639. doi: 10.1016/S0017-9310(01)00179-X
  • Youngs, D. (1982). Time-dependent multi-material flow with large fluid distortion. Numerical methods for fluid dynamics (p. 273). New York: Academic Press.