2,432
Views
35
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of the aerodynamic characteristics of high-speed trains of different lengths under crosswind with or without windbreaks

, &
Pages 195-215 | Received 26 Jun 2016, Accepted 07 Oct 2017, Published online: 01 Nov 2017

References

  • Ashton, N., & Revell, A. (2015). Key factors in the use of DDES for the flow around a simplified car. International Journal of Heat and Fluid Flow, 54, 236–249. doi: 10.1016/j.ijheatfluidflow.2015.06.002
  • Avila-Sanchez, S., Pindado, S., Lopez-Garcia, O., & Sanz-Andres, A. (2014). Wind tunnel analysis of the aerodynamic loads on rolling stock over railway embankments: The effect of shelter windbreaks. Vascular and Endovascular Surgery, 2014(6), 488–494.
  • Baker, C. J. (2010). The simulation of unsteady aerodynamic cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics, 98(2), 88–99. doi: 10.1016/j.jweia.2009.09.006
  • Bell, J. R., Burton, D., Thompson, M. C., Herbst, A. H., & Sheridan, J. (2015). Moving model analysis of the slipstream and wake of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 136, 127–137. doi: 10.1016/j.jweia.2014.09.007
  • CEN European Standard. (2010). Railway applications–aerodynamics. Part 6: Requirements and test procedures for cross wind assessment, CEN EN 14067-6.
  • CEN European Standard. (2013). Railway applications – aerodynamics. Part 4: Requirements and Test Procedures for Aerodynamics on Open Track, CEN EN 14067-4.
  • Cheli, F., Corradi, R., Sabbioni, E., & Tomasini, G. (2011). Wind tunnel tests on heavy road vehicles: Cross wind induced loads—part 1. Journal of Wind Engineering and Industrial Aerodynamics, 99(10), 1000–1010. doi: 10.1016/j.jweia.2011.07.009
  • Cheli, F., Corradi, R., & Tomasini, G. (2012). Crosswind action on rail vehicles: A methodology for the estimation of the characteristic wind curves. Journal of Wind Engineering and Industrial Aerodynamics, 104–106, 248–255. doi: 10.1016/j.jweia.2012.04.006
  • Cheli, F., Giappino, S., Rosa, L., Tomasini, G., & Villani, M. (2013). Experimental study on the aerodynamic forces on railway vehicles in presence of turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 123, 311–316. doi: 10.1016/j.jweia.2013.09.013
  • Cheli, F., Ripamonti, F., Rocchi, D., & Tomasini, G. (2010). Aerodynamic behaviour investigation of the new EMUV250 train to cross wind. Journal of Wind Engineering and Industrial Aerodynamics, 98(4), 189–201. doi: 10.1016/j.jweia.2009.10.015
  • Daniels, S. J., Castro, I. P., & Xie, Z.-T. (2016). Numerical analysis of freestream turbulence effects on the vortex-induced vibrations of a rectangular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 153, 13–25. doi: 10.1016/j.jweia.2016.03.007
  • Fluent Inc. (2011). Fluent user’s guide. Lebanon, NH: Fluent Incorporated.
  • Flynn, D., Hemida, H., Soper, D., & Baker, C. (2014). Detached-eddy simulation of the slipstream of an operational freight train. Journal of Wind Engineering and Industrial Aerodynamics, 132, 1–12. doi: 10.1016/j.jweia.2014.06.016
  • García, J., Muñoz-Paniagua, J., Jiménez, A., Migoya, E., & Crespo, A. (2015). Numerical study of the influence of synthetic turbulent inflow conditions on the aerodynamics of a train. Journal of Fluids and Structures, 56(9), 134–151. doi: 10.1016/j.jfluidstructs.2015.05.002
  • Hemida, H., & Baker, C. (2010). Large-eddy simulation of the flow around a freight wagon subjected to a crosswind. Computers and Fluids, 39(10), 1944–1956. doi: 10.1016/j.compfluid.2010.06.026
  • Hemida, H., & Krajnovic, S. (2006, September 5–8). Numerical study of the unsteady flow structures around train-shaped body subjected to side winds. ECCOMAS CFD 2006: Proceedings of the European conference on computational fluid dynamics. Egmond aan Zee, The Netherlands, Delft University of Technology; European Community on Computational Methods in Applied Sciences (ECCOMAS).
  • Hemida, H., & Krajnović, S. (2008). LES study of the influence of a train-nose shape on the flow structures under cross-wind conditions. Journal of Fluids Engineering, 130(9), 253–257. doi: 10.1115/1.2953228
  • Hemida, H., & Krajnović, S. (2009a). Transient simulation of the aerodynamic response of a double-deck bus in gusty winds. Journal of Fluids Engineering, 131(3), 031101. doi: 10.1115/1.3054288
  • Hemida, H., & Krajnović, S. (2009b). Exploring flow structures around a simplified ICE2 train subjected to a 30° side wind using LES. Engineering Applications of Computational Fluid Mechanics, 3(1), 28–41. doi: 10.1080/19942060.2009.11015252
  • Hemida, H., & Krajnović, S. (2010). LES study of the influence of the nose shape and yaw angles on flow structures around trains. Journal of Wind Engineering and Industrial Aerodynamics, 98(1), 34–46. doi: 10.1016/j.jweia.2009.08.012
  • Hemida, H., Krajnovic, S., & Davidson, L. (2005, June). Large eddy simulations of the flow around a simplified high speed train under the influence of cross-wind. Proceedings of 17th AIAA computational dynamics conference, Toronto, Ontario, Canada.
  • Huang, S., Hemida, H., & Yang, M. (2016). Numerical calculation of the slipstream generated by a CRH2 high-speed train. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(1), 103–116. doi: 10.1177/0954409714528891
  • Huang, Z. X., Chen, L., & Jiang, K. L. (2012). Influence of length of train formation and vestibule diaphragm structure on aerodynamic drag of high speed train model. Journal of Experiments in Fluid Mechanics, 26(5), 36–41.
  • Khier, W., Breuer, M., & Durst, F. (2000). Flow structure around trains under side wind conditions: A numerical study. Computers and Fluids, 29(2), 179–195. doi: 10.1016/S0045-7930(99)00008-0
  • Krimmelbein, N., & Radespiel, R. (2009). Transition prediction for three-dimensional flows using parallel computation. Computers and Fluids, 38(1), 121–136. doi: 10.1016/j.compfluid.2008.01.004
  • Lee, A. H., Campbell, R. L., & Hambric, S. A. (2014). Coupled delayed-detached-eddy simulation and structural vibration of a self-oscillating cylinder due to vortex-shedding. Journal of Fluids and Structures, 48, 216–234. doi: 10.1016/j.jfluidstructs.2014.02.019
  • Liu, J. L., Zhang, J. Y., & Zhang, W. H. (2013). Study on characteristics of unsteady aerodynamic loads of a high-speed train under crosswinds by large eddy simulation. Journal of the China Railway Society, 35(6), 13–21.
  • Mao, J., Yanhong, X. I., & Yang, G. (2012). Numerical analysis on the influence of train formation on the aerodynamic characteristics of high-speed trains under crosswind. China Railway Science, 33(1), 78–85.
  • Marzok, C., Deh, B., Courteille, P. W., & Zimmermann, C. (2007). Crosswind stability of high-speed train on a high embankment. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail & Rapid Transit, 221(2), 205–225. doi: 10.1243/0954409JRRT126
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. Aiaa Journal, 32(8), 1598–1605. doi: 10.2514/3.12149
  • Morden, J. A., Hemida, H., & Baker, C. J. (2015). Comparison of rans and detached eddy simulation results to wind-tunnel data for the surface pressures upon a class 43 high-speed train. Journal of Fluids Engineering, 137(4), 041108. doi: 10.1115/1.4029261
  • Muld, T. W., Efraimsson, G., & Henningson, D. S. (2014). Wake characteristics of high-speed trains with different lengths. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 228(4), 333–342. doi: 10.1177/0954409712473922
  • Niu, J. Q., Liang, X. F., & Zhou, D. (2016). Experimental study on the effect of Reynolds number on the aerodynamic performance of high speed train with and without yaw angle. Journal of Wind Engineering and Industrial Aerodynamics, 157, 36–46. doi: 10.1016/j.jweia.2016.08.007
  • Niu, J.-Q., Zhou, D., & Liang, X.-F. (2017). Experimental research on the aerodynamic characteristics of a high-speed train under different turbulence conditions. Experimental Thermal and Fluid Science, 80, 117–125. doi: 10.1016/j.expthermflusci.2016.08.014
  • Östh, J., & Krajnović, S. (2014). A study of the aerodynamics of a generic container freight wagon using large-eddy simulation. Journal of Fluids and Structures, 44(1), 31–51. doi: 10.1016/j.jfluidstructs.2013.09.017
  • Riccoa, P., Baronb, A., & Moltenib, P. (2007). Nature of pressure waves induced by a high-speed train travelling through a tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 95(8), 781–808. doi: 10.1016/j.jweia.2007.01.008
  • Schlichting, H. (1979). Boundary layer theory [M].
  • Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid rans-les approach with delayed-des and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
  • So, R. M. C, Wang, X. Q., Xie, W. C., & Zhu, J. (2008). Free-stream turbulence effects on vortex-induced vibration and flow-induced force of an elastic cylinder. Journal of Fluids and Structures, 24(4), 481–495. doi: 10.1016/j.jfluidstructs.2007.10.013
  • Spalart, P. R. (2009). Detached-eddy simulation. Annual Review of Fluid Mechanics, 41(1), 181–202. doi: 10.1146/annurev.fluid.010908.165130
  • Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20(3), 181–195. doi: 10.1007/s00162-006-0015-0
  • Spalart, P. R., Jou, W. H., Strelets, M., & Allmaras, S. R. (1997). Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES, 1, 4–8.
  • Suzuki, M., Tanemoto, K., & Maeda, T. (2003). Aerodynamic characteristics of train/vehicles under cross winds. Journal of Wind Engineering and Industrial Aerodynamics, 91(1–2), 209–218. doi: 10.1016/S0167-6105(02)00346-X
  • Tian, H. Q. (2000). Influence of form of train formation on running air resistance. Electric Drive for Locomotive, 2000(4), 9–11.
  • Tomasini, G., & Cheli, F. (2013). Admittance function to evaluate aerodynamic loads on vehicles: Experimental data and numerical model. Journal of Fluids and Structures, 38(3), 92–106. doi: 10.1016/j.jfluidstructs.2012.12.009
  • Tomasini, G., Giappino, S., Cheli, F., & Schito, P. (2016). Windbreaks for railway lines: Wind tunnel experimental tests. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail & Rapid Transit, 405(6790), 1049–1052.
  • Wang, B., Xu, Y.-L., Zhu, L.-D., & Li, Y.-L. (2014). Crosswind effect studies on road vehicle passing by bridge tower using computational fluid dynamics. Engineering Applications of Computational Fluid Mechanics, 8(3), 330–344. doi: 10.1080/19942060.2014.11015519
  • Xi, Y., Mao, J., Gao, L., & Yang, G. (2014). Aerodynamic force/moment for high-speed train bogie in crosswind field. Journal of Central South University, 45(5), 1705–1715.
  • Xiang, H., Li, Y., Wang, B., & Liao, H. (2015). Numerical simulation of the protective effect of railway wind barriers under crosswinds. International Journal of Rail Transportation, 3(3), 151–163. doi: 10.1080/23248378.2015.1054906
  • Zhang, J., Li, J.-j., Tian, H.-q., Gao, G.-j., & Sheridan, J. (2016). Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance. Journal of Fluids and Structures, 61(4), 249–261. doi: 10.1016/j.jfluidstructs.2015.10.006
  • Zhang, T., Xia, H., & Guo, W. W. (2013). Analysis on running safety of train on bridge with wind barriers subjected to cross wind. Wind & Structures An International Journal, 17(2), 203–225. doi: 10.12989/was.2013.17.2.203
  • Zheng, D.-Q., Zhang, A.-S., & Gu, M. (2012). Improvement of inflow boundary condition in large eddy simulation of flow around tall building. Engineering Applications of Computational Fluid Mechanics, 6(4), 633–647. doi: 10.1080/19942060.2012.11015448