1,029
Views
6
CrossRef citations to date
0
Altmetric
Articles

Development and testing of a soot particle concentration estimator using Lagrangian post-processing

, , &
Pages 236-249 | Received 15 May 2017, Accepted 31 Oct 2017, Published online: 23 Nov 2017

References

  • Adedoyin, A. A., Walters, D. K., & Bhushan, S. (2015). Investigation of turbulence model and numerical scheme combinations for practical finite-volume large eddy simulations. Engineering Applications of Computational Fluid Mechanics, 9, 324–342. doi: 10.1080/19942060.2015.1028151
  • Attili, A., Bisetti, F., Mueller, M. E., & Pitsch, H. (2016). Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combustion and Flame, 166, 192–202. doi: 10.1016/j.combustflame.2016.01.018
  • Beniwal, R., & Shivgotra, V. K. (2009). An elementary framework for judging the cardiovascular toxicity of carbon soot: Experiences from an occupational health survey of diamond industry workers. Cardiovascular Toxicology, 9(4), 194–200. doi: 10.1007/s12012-009-9053-3
  • Bozorgzadeh, S. (2012). Development of soot concentration estimator for industrial combustion applications (PhD thesis). Ryerson University.
  • Brownh, A. J., & Heywood, J. B. (1988). A fundamentally-based stochastic mixing model method for predicting NO and soot emissions from direct injection diesel engines. Combustion Science and Technology, 58, 195–207. doi: 10.1080/00102208808923963
  • Celnik, M. S., Sander, M., Raj, A., West, R. H., & Kraft, M. (2009). Modelling soot formation in a premixed flame using an aromatic-site soot model and an improved oxidation rate. Proceedings of the Combustion Institute, 32, 639–646. doi: 10.1016/j.proci.2008.06.062
  • Chernov, V., Thomson, M. J., Dworkin, S. B., Slavinskaya, N. A., & Riedel, U. (2014). Soot formation with C1 and C2 fuels using an improved chemical mechanism for PAH growth. Combustion and Flame, 161, 592–601. doi: 10.1016/j.combustflame.2013.09.017
  • Chernov, V., Zhang, Q., Thomson, M., & Dworkin, S. (2012). Numerical investigation of soot formation mechanisms in partially-premixed ethylene–air co-flow flames. Combustion and Flame, 159, 2789–2798. doi: 10.1016/j.combustflame.2012.02.023
  • Constantine, M. M., & Richard, A. D. (1989). Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames. Combustion Science and Technology, 66, 1–16. doi: 10.1080/00102208908947136
  • Daly, M. (2012, June 14). EPA sets tighter standards for soot pollution. Associated Press. Retrieved from http://www.sandiegouniontribune.com/
  • Dworkin, S., Zhang, Q., Thomson, M. J., Slavinskaya, N. A., & Riedel, U. (2011). Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combustion and Flame, 158(9), 1682–1695. doi: 10.1016/j.combustflame.2011.01.013
  • Dworkin, S. B., Cooke, J. A., Bennett, B. A. V., Connelly, B. C., Long, M. B., Smooke, M. D., … Colket, M. B. (2009). Distributed-memory parallel computation of a forced, time-dependent, sooting, ethylene/air coflow diffusion flame. Combustion Theory and Modelling, 13, 795–822. doi: 10.1080/13647830903159293
  • Dworkin, S. B., Smooke, M. D., & Giovangigli, V. (2009). The impact of detailed multicomponent transport and thermal diffusion effects on soot formation in ethylene/air flames. Proceedings of the Combustion Institute, 32, 1165–1172. doi: 10.1016/j.proci.2008.05.061
  • Eaves, N. A., Thomson, M. J., & Dworkin, S. B. (2013). The effect of conjugate heat transfer on soot formation modeling at elevated pressures. Combustion Science and Technology, 185, 1799–1819. doi: 10.1080/00102202.2013.839554
  • Eaves, N. A., Veshkini, A., Riese, C., Zhang, Q., Dworkin, S. B., & Thomson, M. J. (2012). A numerical study of high pressure, laminar, sooting, ethane-air coflow diffusion flames. Combustion and Flame, 159, 3179–3190. doi: 10.1016/j.combustflame.2012.03.017
  • Eaves, N. A., Zhang, Q., Liu, F., Guo, H., Dworkin, S. B., & Thomson, M. J. (2016). Coflame: A refiend and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Computer Physics Communications, 207, 464–477. doi: 10.1016/j.cpc.2016.06.016
  • EPA sets stricter clean air standard for soot. (2015, December 15). (International Daily Newswire). Retrieved from http://ens-newswire.com/2012/12/15/epa-sets-stricter-clean-air-standard-for-soot-pollution/
  • Fairweather, M., Jones, W. P., & Lindstedt, R. P. (1992). Predictions of radiative transfer from a turbulent reacting jet in a cross-wind. Combustion and Flame, 89, 45–63. doi: 10.1016/0010-2180(92)90077-3
  • Frenklach, M., & Wang, H. (1991). Detailed modeling of soot particle nucleation and growth. Proceedings of the Combustion Institute, 23, 1559–1566. doi: 10.1016/S0082-0784(06)80426-1
  • Glassman, I. (1989). Soot formation in combustion processes. Proceedings of the Combustion Institute, 22, 295–311. doi: 10.1016/S0082-0784(89)80036-0
  • Gobbato, P., Masi, M., Toffolo, A., Lazzaretto, A., & Tanzinid, G. (2012). Calculation of the flow field and NOx emissions of a gas turbine combustor by a coarse computational fluid dynamics model. Energy, 45, 445–455. doi: 10.1016/j.energy.2011.12.013
  • Harris, M. M., King, G. B., & Laurendeau, N. M. (1986). Influence of temperature and hydroxyl concentration on incipient soot formation in premixed flames. Combustion and Flame, 64, 99–112. doi: 10.1016/0010-2180(86)90101-X
  • Hunter, T., Litzinger, T., Wang, H., & Frenklach, M. (1996). Ethane oxidation at elevated pressures in the intermediate temperature regime: Experiments and modeling. Combustion and Flame, 104, 505–523. doi: 10.1016/0010-2180(95)00154-9
  • Jaberi, F. A., & Givi, P. (1995). Inter-layer diffusion model of scalar mixing in homogenous turbulence. Combustion Science and Technology, 104, 249–272. doi: 10.1080/00102209508907723
  • Kennedy, I. M. (1997). Models of soot formation and oxidation. Progress in Energy and Combustion Science, 23, 95–132. doi: 10.1016/S0360-1285(97)00007-5
  • Khosousi, A., & Dworkin, S. B. (2015). Detailed modelling of soot oxidation by O2 and OH in laminar diffusion flames. Proceedings of the Combustion Institute, 35(2), 1903–1910. doi: 10.1016/j.proci.2014.05.152
  • Koo, H., Hassanaly, M., Raman, V., Mueller, M., & Geigle, K. (2016). Large-Eddy simulation of soot formation in a model gas turbine combustor. Engineering for Gas Turbines and Power, 139(3), 031503-1–031503-9.
  • Legros, G., Joulain, P., Vantelon, J.-P., Funetes, A., Bertheau, D., & Torero, J. L. (2006). Soot volume fraction measurements in a three-dimensional laminar diffusion flame established in microgravity. Combustion Science and Technology, 178, 813–835. doi: 10.1080/00102200500271344
  • Liu, F., Guo, H., Smallwood, G., & Gulder, O. (2003). Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combustion Theory and Modelling, 7, 301–315. doi: 10.1088/1364-7830/7/2/305
  • Mandatori, P. M., & Gulder, O. L. (2011). Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3 MPa. Proceedings of the Combustion Institute, 33, 577–584. doi: 10.1016/j.proci.2010.06.004
  • Olson, D. B., Pickens, J. C., & Gill, R. J. (1985). The effects of molecular structure on soot formation II. Diffusion flames. Combustion and Flame, 62, 43–60. doi: 10.1016/0010-2180(85)90092-6
  • Park, O., Burns, R. A., Buxton, O. R. H., & Clemens, N. T. (2017). Mixture fraction, soot volume fraction, and velocity imaging in the soot-inception region of a turbulent non-premixed jet flame. Proceedings of the Combustion Institute, 36, 899–907. doi: 10.1016/j.proci.2016.08.048
  • Park, S. H., Rogak, S. N., Bushe, W. K., Wen, J. Z., & Thomson, M. J. (2005). An aerosol model to predict size and structure of soot particles. Combustion Theory and Modelling, 9, 499–513. doi: 10.1080/13647830500195005
  • Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10, 319–339. doi: 10.1016/0360-1285(84)90114-X
  • Said, R., Garo, A., & Borghi, R. (1997). Soot formation modeling for turbulent flames. Combustion and Flame, 108, 71–86. doi: 10.1016/S0010-2180(96)00068-5
  • Santoro, R. J., Semerjian, H. G., & Dobbins, R. A. (1983). Soot particle measurements in diffusion flames. Combustion and Flame, 51, 203–218. doi: 10.1016/0010-2180(83)90099-8
  • Shiraiwa, M., Selzle, K., & Poschl, U. (2012). Hazardous components and health effects of atmospheric aerosol particles: Reactive oxygen species, soot, polycyclic aromatic compounds and allergenic prorcjteins. Free Radical Research, 46(8), 927–939. doi: 10.3109/10715762.2012.663084
  • Sirignano, M., Kent, J., & D’Anna, A. (2015). Further experimental and modelling evidences of soot fragmentation in flames. Proceedings of the Combustion Institute, 35, 1779–1786. doi: 10.1016/j.proci.2014.05.010
  • Smooke, M., Long, M., Connelly, B., Colket, M., & Hall, R. (2005). Soot formation in laminar diffusion flames. Combustion and Flame, 143, 613–628. doi: 10.1016/j.combustflame.2005.08.028
  • Smooke, M., McEnally, C., Pfefferle, L., Hall, R., & Colket, M. (1999). Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combustion and Flame, 117, 117–139. doi: 10.1016/S0010-2180(98)00096-0
  • Smyth, K. C., & Shaddix, C. R. (1996). Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combustion and Flame, 107, 418–452. doi: 10.1016/S0010-2180(96)00170-8
  • Su, W.-T., Li, F.-C., Li, X.-B., Wei, X.-Z., & Zhao, Y. (2012). Assessment of LES performance in simulating complex 3D flows in turbo-machines. Engineering Applications of Computational Fluid Mechanics, 6, 356–365. doi: 10.1080/19942060.2012.11015427
  • Tang, Y., Guo, B., & Ranjan, D. (2015). Numerical simulation of aerosol deposition from turbulent flows using three-dimensional RANS and LES turbulence models. Engineering Applications of Computational Fluid Mechanics, 9, 174–186. doi: 10.1080/19942060.2015.1004818
  • Turns, S. (2000). An introduction to combustion: Concepts and applications second edition. New York: McGraw-Hill.
  • Veshkini, A., Dworkin, S. B., & Thomson, M. J. (2014). A soot particle surface reactivity model applied to a wide range of laminar ethylene/air flames. Combustion and Flame, 161(12), 3191–3200. doi: 10.1016/j.combustflame.2014.05.024
  • Wen, J. Z., Thomson, M. J., Lightstone, M. F., Park, S. H., & Rogak, S. N. (2006). An improved moving sectional aerosol model of soot formation in a plug flow reactor. Combustion Science and Technology, 178, 921–951. doi: 10.1080/00102200500270007
  • Wen, J. Z., Thomson, M. J., Lightstone, M. F., & Rogak, S. N. (2006). Detailed kinetic modeling of carbonaceous nanoparticle inception and surface growth during the pyrolysis of C6H6 behind shock waves. Energy and Fuels, 20, 547–559. doi: 10.1021/ef050081q
  • Zeng, W., & Chen, X.-x. (2011). A reduced reaction mechanism of polycyclic aromatic hydrocarbon formation in diesel partially premixed combustion. Engineering Applications of Computational Fluid Mechanics, 5, 530–540. doi: 10.1080/19942060.2011.11015392
  • Zhang, Q. (2009). Detailed modeling of soot formation/oxidation in laminar coflow diffusion flames (PhD thesis). University of Toronto.
  • Zhao, B., Yang, Z., Johnston, M. V., Wang, H., Wexler, A. A., Balthasar, M., & Kraft, M. (2003). Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame. Combustion and Flame, 133, 173–188. doi: 10.1016/S0010-2180(02)00574-6
  • Zhong, B.-J., Dang, S., Song, Y.-N., & Gong, J.-S. (2012). 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments. Combustion Theory and Modelling, 16, 143–171. doi: 10.1080/13647830.2011.598567
  • Zhu, J., Ouyang, Z., & Lu, Q. (2013). Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. Journal of Thermal Science, 22(3), 261–268. doi: 10.1007/s11630-013-0622-1