2,821
Views
7
CrossRef citations to date
0
Altmetric
Articles

Rough boundary treatment method for the shear-stress transport k - ω model

Pages 261-269 | Received 12 Jan 2017, Accepted 24 Nov 2017, Published online: 14 Dec 2017

References

  • Apsley, D. (2007). CFD calculation of turbulent flow with arbitrary wall roughness. Flow, Turbulence and Combustion, 78(2), 153–175. doi: 10.1007/s10494-006-9059-x
  • Aupoix, B. (2014). Roughness corrections for the k–ω shear stress transport model: Status and proposals. Journal of Fluids Engineering, 137(2), 1–10. doi: 10.1115/1.4028122
  • Aupoix, B., & Spalart, P. R. (2003). Extensions of the spalart-allmaras turbulence model to account for wall roughness. International Journal of Heat and Fluid Flow, 24, 454–462. doi: 10.1016/S0142-727X(03)00043-2
  • Carravetta, A., & Morte, R. D. (2004). Discussion of “response of velocity and turbulence to sudden change of Bed roughness in open-channel flow” by xingwei chen and Yee-meng chiew. Journal of Hydraulic Engineering, 130(6), 587–589. doi: 10.1061/(ASCE)0733-9429(2004)130:6(587)
  • Chen, X. W., & Chiew, Y. M. (2003). Response of velocity and turbulence to sudden change of bed roughness in open-channel flow. Journal of Hydraulic Engineering, 129(1), 35–43. doi: 10.1061/(ASCE)0733-9429(2003)129:1(35)
  • Durbin, P. A., Medic, G., Seo, J. M., Eaton, J. K., & Song, S. (2001). Rough wall modification of two-layer k-ε. Journal of Fluids Engineering, 123(1), 16–21. doi: 10.1115/1.1343086
  • Eça, L., & Hoekstra, M. (2011). Numerical aspects of including wall roughness effects in the SST k-ω eddy-viscosity turbulence model. Computers and Fluids, 40(1), 299–314. doi: 10.1016/j.compfluid.2010.09.035
  • Ferziger, J. H., & Peric, M. (2002). Computational methods for fluid dynamics. Berlin: Springer.
  • Flack, K. A., & Schultz, M. P. (2014). Roughness effects on wall-bounded turbulent flows. Physics of Fluids, 26(10), 1–17. doi: 10.1063/1.4896280
  • Flack, K. A., Schultz, M. P., & Connelly, J. S. (2007). Examination of a critical roughness height for outer layer similarity. Physics of Fluids, 19(9), 1–9. doi: 10.1063/1.2757708
  • Flack, K. A., Schultz, M. P., & Rose, W. B. (2012). The onset of roughness effects in the transitionally rough regime. International Journal of Heat and Fluid Flow, 35, 160–167. doi: 10.1016/j.ijheatfluidflow.2012.02.003
  • Goldberg, U. C., & Batten, P. (2015). A wall-distance-free version of the SST turbulence model. Engineering Applications of Computational Fluid Mechanics, 9(1), 33–40. doi: 10.1080/19942060.2015.1004791
  • Hellsten, A., & Laine, S. (1997). Extension of the k-ω-SST turbulence model for flows over rough surfaces. 22nd atmospheric flight mechanics conference, guidance, navigation, and control and co-located conferences AIAA Paper (pp. 1–9). New Orleans, LA, USA.
  • Hu, P., Li, Y., Han, Y., Cai, S. C. S., & Xu, X. (2016). Numerical simulations of the mean wind speeds and turbulence intensities over simplified gorges using the SST turbulence model. Engineering Applications of Computational Fluid Mechanics, 10(1), 359–372. doi: 10.1080/19942060.2016.1169947
  • Jiménez, J. (2004). Turbulent flows over rough walls. Annual Review of Fluid Mechanics, 36(1991), 173–196. doi: 10.1146/annurev.fluid.36.050802.122103
  • Knopp, T., Eisfeld, B., & Calvo, J. B. (2009). A new extension for k–ω turbulence models to account for wall roughness. International Journal of Heat and Fluid Flow, 30(1), 54–65. doi: 10.1016/j.ijheatfluidflow.2008.09.009
  • Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269–289. doi: 10.1016/0045-7825(74)90029-2
  • Liu, X. (2014). New near-wall treatment for suspended sediment transport simulations with high reynolds number turbulence models. Journal of Hydraulic Engineering, 140(3), 333–339. doi: 10.1061/(ASCE)HY.1943-7900.0000824
  • Menter, F. R. (1992). Improved two-equation k-omega turbulence models for aerodynamic flows. NASA STI/Recon Technical Report N.
  • Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method in computational fluid dynamics - An advanced Introduction with OpenFOAM and matlab. Berlin: Springer.
  • Nezu, I., & Tominaga, A. (1994). Response of velocity and turbulence to abrupt changes from smooth to rough beds in open-channel flow. Proc., symposium on fundamentals and advancements in hydraulic measurements and experimentation, Buffalo, New York, 195–204.
  • Nieto, F., Hargreaves, D. M., Owen, J. S., & Hernandez, S. (2015). On the applicability of 2D URANS and SST turbulence model to the fluid-structure interaction of rectangular cylinders. Engineering Applications of Computational Fluid Mechanics, 9(1), 157–173. doi: 10.1080/19942060.2015.1004817
  • Nikuradse, J. (1933). Laws of flow in rough pipes. Berlin: NACA Technical Memorandum 1292.
  • Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23(1), 601–639. doi: 10.1146/annurev.fl.23.010191.003125
  • Schultz, M. P., & Flack, K. A. (2005). Outer layer similarity in fully rough turbulent boundary layers. Experiments in Fluids, 38(3), 328–340. doi: 10.1007/s00348-004-0903-2
  • Schultz, M. P., & Flack, K. a. (2007). The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. Journal of Fluid Mechanics, 580, 381–405. doi: 10.1017/S0022112007005502
  • Schultz, M. P., & Flack, K. A. (2009). Turbulent boundary layers on a systematically varied rough wall. Physics of Fluids, 21, 1–9. doi: 10.1063/1.3059630
  • Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 26(11), 1299–1310. doi: 10.2514/3.10041
  • Wilcox, D. C. (2008). Formulation of the k-w turbulence model revisited. AIAA Journal, 46(11), 2823–2838. doi: 10.2514/1.36541