1,138
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Viscous numerical wave tank for Bragg resonance by cnoidal and Stokes waves

, & ORCID Icon
Pages 308-323 | Received 30 Aug 2017, Accepted 22 Jan 2018, Published online: 08 Feb 2018

References

  • Anbarsooz, M., Passandideh-Fard, M., & Moghiman, M. (2013). Fully nonlinear viscous wave generation in numerical wave tanks. Ocean Engineering, 59, 73–85.
  • Bai, W., Mingham, C. G., Causon, D. M., & Qian, L. (2010). Finite volume simulation of viscous free surface waves using the Cartesian cut cell approach. International Journal for Numerical Methods in Fluids, 63(1), 69–95.
  • Bell, J. B., Colella, P., & Glaz, H. M. (1989). A second-order projection method for the incompressible Navier-Stokes equations. Journal of Computational Physics, 85(2), 257–283.
  • Bihs, H., & Kamath, A. (2017). A combined level set/ghost cell immersed boundary representation for floating body simulations. International Journal for Numerical Methods in Fluids, 83(12), 905–916.
  • Brorsen, M., & Larsen, J. (1987). Source generation of nonlinear gravity waves with the boundary integral equation method. Coastal Engineering, 11(2), 93–113.
  • Ceniceros, H. D., Roma, A. M., Silveira-Neto, A., & Villar, M. M. (2010). A robust, fully adaptive hybrid level-set/front-tracking method for two-phase flows with an accurate surface tension computation. Communications in Computational Physics, 8(1), 51–94.
  • Cho, Y. S., Lee, J. I., & Kim, Y. T. (2004). Experimental study of strong reflection of regular water waves over submerged breakwaters in tandem. Ocean Engineering, 31(10), 1325–1335.
  • Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22(104), 745–762.
  • Cimpeanu, R., & Papageorgiou, D. (2014). On the generation of nonlinear travelling waves in confined geometries using electric fields. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2020), 1–14.
  • Dasgupta, R., Tomar, G., & Govindarajan, R. (2015). Numerical study of laminar, standing hydraulic jumps in a planar geometry. The European Physical Journal E, 38(45), 1–14.
  • Deike, L., Melville, W. K., & Popinet, S. (2015). Air entrainment and bubble statistics in three-dimensional breaking waves. Bulletin of the American Physical Society, 60, 1–2.
  • Deike, L., Popinet, S., & Melville, W. K. (2015). Capillary effects on wave breaking. Journal of Fluid Mechanics, 769, 541–569.
  • Dietze, G. F. (2016). On the Kapitza instability and the generation of capillary waves. Journal of Fluid Mechanics, 789, 368–401.
  • Fenton, J. D. (1985). A fifth-order stokes theory for steady waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 111(2), 216–234.
  • Fenton, J. D. (1990). Nonlinear wave theories. the Sea, 9(Part A), 3–25.
  • Fenton, J. D. (1998). The cnoidal theory of water waves. In J. B. Herbich (Ed.), Developments in offshore engineering: Wave phenomena and offshore topics (handbook of coastal & ocean engineering) (pp. 55–101). Houston: GulfProfessional Publishing.
  • Ha, T., Lee, J., & Cho, Y. S. (2011). Internal wave maker for Navier-Stokes equations in a three-dimensional numerical model. Journal of Coastal Research, 64, 511–515.
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.
  • Hsu, T. W., Hsiao, S. C., Ou, S. H., Wang, S. K., Yang, B. D., & Chou, S. E. (2007). An application of Boussinesq equations to Bragg reflection of irregular waves. Ocean Engineering, 34(5–6), 870–883.
  • Hsu, T. W., Lin, J. F., Hsiao, S. C., Ou, S. H., Babanin, A. V., & Wu, Y. T. (2014). Wave reflection and vortex evolution in Bragg scattering in real fluids. Ocean Engineering, 88, 508–519.
  • Hsu, T. W., Tsai, L. H., & Huang, Y. T. (2003). Bragg scattering of water waves by multiply composite artificial bars. Coastal Engineering Journal, 45(2), 235–253.
  • Johnston, H., & Liu, J. G. (2004). Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. Journal of Computational Physics, 199(1), 221–259.
  • Kirby, J. T., & Anton, J. P. (1990). Bragg reflection of waves by artificial bars. Proceedings of the 22nd international conference on coastal engineering, New York.
  • Kraskowski, M. (2010). Simulating hull dynamics in waves using a RANSE code. Ship Technology Research, 57(2), 120–127.
  • Lal, A., & Elangovan, M. (2008). CFD simulation and validation of flap type wave-maker. World Academy of Science, Engineering and Technology, 46(1), 76–82.
  • Li, H. t., Li, J., Zong, Z., & Chen, Z. (2014). Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation. Ocean Engineering, 82, 20–31.
  • Lin, P., & Liu, P. L. F. (1998). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. Journal of Geophysical Research: Oceans, 103(C8), 15677–15694.
  • Lin, P., & Liu, P. L. F. (1999). Internal wave-maker for Navier-Stokes equations models. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(4), 207–215.
  • Mansard, E. P., & Funke, E. (1980). The measurement of incident and reflected spectra using a least squares method. Proceedings of the 17th international conference on coastal engineering, New York, 1, pp. 154–172.
  • Park, J. C., Kim, M. H., & Miyata, H. (1999). Fully non-linear free-surface simulations by a 3D viscous numerical wave tank. International Journal for Numerical Methods in Fluids, 29(6), 685–703.
  • Popinet, S. (2003). Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics, 190(2), 572–600.
  • Popinet, S. (2009). An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 228(16), 5838–5866.
  • Popinet, S. (2013). Gerris Flow Solver web page. Retrieved from http://gfs.sourceforge.net
  • Ramaswamy, B., & Kawahara, M. (1987). Arbitrary Lagrangian–Eulerianc finite element method for unsteady, convective, incompressible viscous free surface fluid flow. International Journal for Numerical Methods in Fluids, 7(10), 1053–1075.
  • Schäffer, H. A., & Klopman, G. (2000). Review of multidirectional active wave absorption methods. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(2), 88–97.
  • Senturk, U. (2011). Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method. Computers & Fluids, 44(1), 221–228. DOI:10.1016/j.compfluid.2011.01.004 Retrieved from http://www.sciencedirect.com/science/article/pii/S0045793011000107
  • Tanizawa, K. (1996). Long time fully nonlinear simulation of floating body motions with artificial damping zone. Journal of the Society of Naval Architects of Japan, 1996, 311–319.
  • Tsai, C. C., Chen, Y. Y., & Hsu, H. C. (2015). Automatic Euler–Lagrange transformation of nonlinear progressive waves in water of uniform depth. Coastal Engineering Journal, 57(3), 1550011-1–1550011-15.
  • Tsai, C. C., Hou, T. H., Popinet, S., & Chao, Y. Y. (2013). Prediction of waves generated by tropical cyclones with a quadtree-adaptive model. Coastal Engineering, 77, 108–119.
  • Tsai, L. H., Kuo, Y. S., Lan, Y. J., Hsu, T. W., & Chen, W. J. (2011). Investigation of multiply composite artificial bars for Bragg scattering of water waves. Coastal Engineering Journal, 53(4), 521–548.
  • Tsai, C. C., Lin, Y. T., Chang, J. Y., & Hsu, T. W. (2016). A coupled-mode study on weakly viscous Bragg scattering of surface gravity waves. Ocean Engineering, 122, 136–144.
  • Wang, L., Tang, H., & Wu, Y. (2015). Simulation of wave–body interaction: A desingularized method coupled with acceleration potential. Journal of Fluids and Structures, 52, 37–48.
  • Wang, L., Tang, H., & Wu, Y. (2016). Wave interaction with a surface-piercing body in water of finite depth: A parametric study. Engineering Applications of Computational Fluid Mechanics, 10(1), 512–528.
  • Xie, Z., Pavlidis, D., Percival, J. R., Gomes, J. L., Pain, C. C., & Matar, O. K. (2014). Adaptive unstructured mesh modelling of multiphase flows. International Journal of Multiphase Flow, 67, 104–110.
  • Zheng, X., Lowengrub, J., Anderson, A., & Cristini, V. (2005). Adaptive unstructured volume remeshing – II: Application to two- and three-dimensional level-set simulations of multiphase flow. Journal of Computational Physics, 208(2), 626–650. doi: 10.1016/j.jcp.2005.02.024 Retrieved from http://www.sciencedirect.com/science/article/pii/S0021999105001233