2,157
Views
8
CrossRef citations to date
0
Altmetric
Articles

Numerical prediction of shock/boundary-layer interactions at high Mach numbers using a modified Spalart–Allmaras model

ORCID Icon, ORCID Icon & ORCID Icon
Pages 459-472 | Received 11 Jul 2017, Accepted 08 Mar 2018, Published online: 06 Apr 2018

References

  • Anderson, J. D., Jr (2004). Modern compressible flow with historical perspective (3rd ed.) (pp. 366–371). New York: McGraw-Hill.
  • Bose, D., Brown, J. L., Prabhu, D. K., Gnoffo, P., Johnston, C. O., & Hollis, B. (2013). Uncertainty assessment of hypersonic aerothermodynamics prediction capability. Journal of Spacecraft and Rockets, 50(1), 12–18. DOI:doi: 10.2514/1.A32268
  • Brown, J. L. (2013). Hypersonic shock wave impingement on turbulent boundary layers: Computational analysis and uncertainty. Journal of Spacecraft and Rockets, 50(1), 96–123. DOI:doi: 10.2514/1.A32259
  • Catris, S., & Aupoix, B. (2000). Density corrections for turbulence models. Aerospace Science and Technology, 4(1), 1–11. DOI:doi: 10.1016/S1270-9638(00)00112-7
  • DeBonis, J. R., Oberkampf, W. L., Wolf, R. T., Orkwis, P. D., Turner, M. G., Babinsky, H., & Benek, J. A. (2012). Assessment of computational fluid dynamics and experimental data for shock boundary-layer interactions. AIAA Journal, 50(4), 891–903. DOI:doi: 10.2514/1.J051341
  • Deck, S., Duveau, P., d’Espiney, P., & Guillen, P. (2002). Development and application of Spalart–Allmaras one-equation turbulence model to three-dimensional supersonic complex configurations. Aerospace Science and Technology, 6(3), 171–183. doi: 10.1016/S1270-9638(02)01148-3
  • Druguet, M. C., Candler, G. V., & Nompelis, I. (2005). Effects of numerics on Navier–Stokes computations of hypersonic double-cone flows. AIAA Journal, 43(3), 616–623. doi: 10.2514/1.6190
  • Edney, B. E. (1968). Anomalous heat-transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock (Report No. FFA–115). Stockholm: The Aeronautical Research Institute of Sweden.
  • Elfstrom, G. M. (1972). Turbulent hypersonic flow at a wedge-compression corner. Journal of Fluid Mechanics, 53(1), 113–127. doi: 10.1017/S0022112072000060
  • Gaitonde, D. V. (2015). Progress in shock-wave/boundary-layer interactions. Progress in Aerospace Sciences, 72, 80–99. DOI:doi: 10.1016/j.paerosci.2014.09.002
  • Guohua, T. U., & Xiaogang, D. (2012). Assessment of two-equation turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes. Chinese Journal of Aeronautics, 25(1), 25–32. doi: 10.1016/S1000-9361(11)60358-0
  • Holden, M. S. (1991). Studies of the mean and unsteady structure of turbulent boundary-layer separation in hypersonic flow. In 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, HI, Paper No. AIAA-1991-1778.
  • Holden, M. S., Wadhams, T. P., & MacLean, M. (2014). Measurements in regions of shock wave/turbulent boundary-layer interaction from Mach 4 to 10 at flight duplicated velocities to evaluate and improve the models of turbulence in CFD codes. DTIC Document. CUBRC, Inc.
  • Holman, J. P. (2009). Heat transfer (10th ed.). Boston, MA: McGraw-Hill Higher Education.
  • Jiang, G. S., & Shu, C. W. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1), 202–228. doi: 10.1006/jcph.1996.0130
  • Knight, D. D., & Degrez, G. (1998). Shock wave turbulent boundary layer interactions in high Mach number flows – a critical survey of current numerical prediction capabilities (Technical Report AGARD-AR-319-02). Neuilly sur Seine, France: Advisory Group for Aerospace Research and Development, NATO.
  • Knight, D., Yan, H., Panaras, A. G., & Zheltovodov, A. (2003). Advances in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Sciences, 39(2–3), 121–184. doi: 10.1016/S0376-0421(02)00069-6
  • MacCormack, R. W., & Candler, G. V. (1989). The solution of Navier–Stokes equations using Gauss–Siedal line relaxation. Computers and Fluids, 17(1), 135–150. doi: 10.1016/0045-7930(89)90012-1
  • Marvin, J. G., Brown, J. L., & Gnoffo, P. A. (2013). Experimental database with baseline CFD solutions: 2-D and axisymmetric hypersonic shock-wave/turbulent boundary-layer interactions (NASA TM-2013-216604). Moffett Field, CA: NASA Ames ResearchCenter.
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. DOI:doi: 10.2514/3.12149
  • Nompelis, I. (2004). Computational study of hypersonic double-cone experiments for code validation (Doctoral dissertation). University of Minnesota, Minneapolis and Saint Paul, MN, pp.119–225.
  • Panaras, A. G. (2015). Turbulence modeling of flows with extensive crossflow separation. Aerospace, 2, 461–481. doi: 10.3390/aerospace2030461
  • Pasha, A. A. (2012). Application of shock-unsteadiness modification to hypersonic shock/turbulent boundary-layer interaction (Doctoral dissertation). Indian Institute of Technology Bombay, Mumbai, India, pp.44–45.
  • Pasha, A. A. (2018). Study of parameters affecting separation bubble size in high speed flows using k–? turbulence model. Journal of Applied and Computational Mechanics, 4(2), 95–104. doi: 10.22055/jacm.2017.22761.1140
  • Pasha, A. A., & Sinha, K. (2008). Shock-unsteadiness model applied to oblique shock-wave/turbulent boundary-layer interaction. International Journal of Computational Fluid Dynamics, 22(8), 569–582. doi: 10.1080/10618560802290284
  • Pasha, A. A., & Sinha, K. (2012). Shock-unsteadiness model applied to hypersonic shock wave/turbulent boundary-layer interactions. Journal of Propulsion and Power, 28(1), 46–60. DOI:doi: 10.2514/1.B34191
  • Quadros, R., & Sinha, K. (2016). Modelling of turbulent energy flux in canonical shock–turbulence interaction. International Journal of Heat and Fluid Flow, 61, 626–635. DOI:doi: 10.1016/j.ijheatfluidflow.2016.07.006
  • Quadros, R., Sinha, K., & Larsson, J. (2016). Turbulent energy flux generated by shock/homogeneous turbulence interaction. Journal of Fluid Mechanics, 976, 113–157. DOI:doi: 10.1017/jfm.2016.236
  • Roy, C. J., & Blottner, F. G. (2006). Review and assessment of turbulence models for hypersonic flows. Progress in Aerospace Sciences, 42(7–8), 469–530. doi: 10.1016/j.paerosci.2006.12.002
  • Roy, S., Pathak, U., & Sinha, K. (2018). Variable turbulent Prandtl number model for shock/boundary-layer interaction. AIAA Journal, 56(1), 342–355. doi: 10.2514/1.J056183
  • Sanders, R., Morano, E., & Druguet, M. C. (1998) Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics. Journal of Computational Physics, 145(2), 511–537. doi: 10.1006/jcph.1998.6047
  • Sinha, K., & Candler G. V. (1998). Convergence improvement of two-equation turbulence model calculations. In 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, Paper No. AIAA-Paper-1998-2649.
  • Sinha, K., Mahesh, K., & Candler, G. V. (2005). Modeling the effect of shock-unsteadiness in shock/turbulent boundary-layer interactions. AIAA Journal, 43(3), 586–594. DOI:doi: 10.2514/1.8611
  • Sinha, K., Mahesh, K., & Candler, G. V. (2003). Modeling shock-unsteadiness in shock/turbulence interaction. Physics of Fluids, 15(8), 2290–2297. DOI:doi: 10.1063/1.1588306
  • Spalart, P. R., & Allmaras, S. R. (1992). A one-equation turbulence model for aerodynamic flows. In 30th Aerospace sciences meeting and exhibit, Reno, NV, Paper No. AIAA-1992-0439.
  • Wilcox, D. C. (2000). Turbulence modeling for CFD (2nd ed.). La Cañada, CA: DCW Industries.
  • Wright, M. J., Candler, G. V., & Bose, D. (1998). Data-parallel line relaxation method for the Navier–Stokes equations. AIAA Journal, 36(9), 1603–1609. doi: 10.2514/2.586
  • Wright, M. J., Sinha, K., Olejniczak, J., Candler, G. V., Magruder, T. D., & Smits, A. J. (2000). Numerical and experimental investigation of double-cone shock interactions. AIAA Journal, 38(12), 2268–2276. doi: 10.2514/2.918
  • Yang, Z. (2015). Large-Eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28(1), 11–24. doi: 10.1016/j.cja.2014.12.007
  • Zhang, Z., Gao, Z., Jiang, C., & Lee, C. H. (2017). A RANS model correction on unphysical over-prediction of turbulent quantities acrossshock wave. International Journal of Heat and Mass Transfer, 106, 1107–1119. doi: 10.1016/j.ijheatmasstransfer.2016.10.087