3,428
Views
13
CrossRef citations to date
0
Altmetric
Articles

Earthquake prediction with meteorological data by particle filter-based support vector regression

, , , ORCID Icon &
Pages 679-688 | Received 25 Dec 2017, Accepted 10 Aug 2018, Published online: 03 Sep 2018

References

  • Ahmadi, A., & Afshar, P. (2016). Intelligent breast cancer recognition using particle swarm optimization and support vector machines. Journal of Experimental & Theoretical Artificial Intelligence, 28(6), 1021–1034. doi: 10.1080/0952813X.2015.1055828
  • Akay, M. F., Abut, F., Cetin, E., Yarim, I., & Sow, B. (2017). Support vector machines for predicting the hamstring and quadriceps muscle strength of college-aged athletes. Turkish Journal of Electrical Engineering & Computer Sciences, 25(4), 2567–2582. doi: 10.3906/elk-1603-304
  • Aminzadeh, F., Katz, S., & Aki, K. (1994). Adaptive neural nets for generation of artificial earthquake precursors. IEEE Transactions on Geoscience and Remote Sensing, 32(6), 1139–1143. doi: 10.1109/36.338361
  • Asencio-Cortés, G., Martínez-Álvarez, F., Morales-Esteban, A., Reyes, J., & Troncoso, A. (2017). Using principal component analysis to improve earthquake magnitude prediction in Japan. Logic Journal of the IGPL, 25(6), 949–966.
  • Borghi, A., Aoudia, A., Riva, R. E., & Barzaghi, R. (2009). GPS monitoring and earthquake prediction: A success story towards a useful integration. Tectonophysics, 465(1-4), 177–189. doi: 10.1016/j.tecto.2008.11.022
  • Cao, K., & Huang, Q. (2018). Geo-sensor (s) for potential prediction of earthquakes: Can earthquake be predicted by abnormal animal phenomena? Annals of GIS, 24(2), 125–138. doi: 10.1080/19475683.2018.1450785
  • Dehbozorgi, L., & Farokhi, F. (2008). Effective feature selection for short-term earthquake prediction using Neuro-Fuzzy classifier –, Centran Tehran Branch, Sci. Assoc. of Electr. & Electron. Eng., Islamic Azad Univ.
  • Dong, H., Jin, X., Lou, Y., & Wang, C. (2014). Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. Journal of Power Sources, 271, 114–123. doi: 10.1016/j.jpowsour.2014.07.176
  • Feizizadeh, B., Roodposhti, M. S., Blaschke, T., & Aryal, J. (2017). Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping. Arabian Journal of Geosciences, 10(5), 122. doi: 10.1007/s12517-017-2918-z
  • Ikram, A., & Qamar, U. (2014). A rule-based expert system for earthquake prediction. Journal of Intelligent Information Systems, 43(2), 205–230. doi: 10.1007/s10844-014-0316-5
  • Ikram, A., & Qamar, U. (2015). Developing an expert system based on association rules and predicate logic for earthquake prediction. Knowledge-Based Systems, 75, 87–103. doi: 10.1016/j.knosys.2014.11.024
  • Insom, P., Cao, C., Boonsrimuang, P., Liu, D., Saokarn, A., Yomwan, P., & Xu, Y. (2015). A support vector machine-based particle filter method for improved flooding classification. IEEE Geoscience and Remote Sensing Letters, 12(9), 1943–1947. doi: 10.1109/LGRS.2015.2439575
  • Lu, K., Hou, M., Jiang, Z., Wang, Q., Sun, G., & Liu, J. (2018). Understanding earthquake from the granular physics point of view – causes of earthquake, earthquake precursors and predictions. International Journal of Modern Physics B, 32(07), 1850081. doi: 10.1142/S0217979218500819
  • Mehdidoust, J. Z., & Shahbahrami, A. (2016). Study Of Expert Systems In Predicting Earthquake.
  • Morzfeld, M., Hodyss, D., & Snyder, C. (2017). What the collapse of the ensemble Kalman filter tells us about particle filters. Tellus A: Dynamic Meteorology and Oceanography, 69(1), 1283809. doi: 10.1080/16000870.2017.1283809
  • Mosavi, A., Bathla, Y., & Varkonyi-Koczy, A. (2017). Predicting the future using Web knowledge: State of the Art survey. International conference on global research and education.
  • Moustra, M., Avraamides, M., & Christodoulou, C. (2011). Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals. Expert Systems with Applications, 38(12), 15032–15039. doi: 10.1016/j.eswa.2011.05.043
  • Murai, S. (2010). Can we predict earthquakes with GPS data? International Journal of Digital Earth, 3(1), 83–90. doi: 10.1080/17538940903548438
  • Nemati, M. (2016). Relationships between modified Mercalli intensity and engineering ground-motion of the earthquakes in Persia. Journal of Earthquake Engineering, 20(5), 795–808. doi: 10.1080/13632469.2015.1104751
  • Sayad, S. (2017). Support vector machine. Np, nd Web, 26.
  • Sikder, I. U., & Munakata, T. (2009). Application of rough set and decision tree for characterization of premonitory factors of low seismic activity. Expert Systems with Applications, 36(1), 102–110. doi: 10.1016/j.eswa.2007.09.032
  • Tharwat, A., Hassanien, A. E., & Elnaghi, B. E. (2017). A BA-based algorithm for parameter optimization of support vector machine. Pattern Recognition Letters, 93, 13–22. doi: 10.1016/j.patrec.2016.10.007
  • Tonooka, H., Palluconi, F. D., Hook, S. J., & Matsunaga, T. (2005). Vicarious calibration of ASTER thermal infrared bands. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2733–2746. doi: 10.1109/TGRS.2005.857885
  • Torabi, M., Hashemi, S., Saybani, M. R., Shamshirband, S., & Mosavi, A. (2018). A hybrid clustering and classification technique for forecasting short-term energy consumption. Environmental Progress & Sustainable Energy. doi:10.1002/ep.12934
  • Tronin, A. A. (2010). Satellite remote sensing in seismology. A review. Remote Sensing, 2(1), 124–150. doi: 10.3390/rs2010124
  • Vapnik, V. (2013). The nature of statistical learning theory. Springer Science & Business Media.
  • Vargas, R. (2017). Deep learning: A review. Advances in Intelligent Systems and Computing.
  • Zhou, Y., Thomas, M. Y., Parsons, B., & Walker, R. T. (2018). Time-dependent postseismic slip following the 1978 M w 7.3 Tabas-e-Golshan, Iran earthquake revealed by over 20 years of ESA InSAR observations. Earth and Planetary Science Letters, 483, 64–75. doi: 10.1016/j.epsl.2017.12.005