4,629
Views
54
CrossRef citations to date
0
Altmetric
Articles

A numerical and experimental study on the energy efficiency of a regenerative Heat and Mass Exchanger utilizing the counter-flow Maisotsenko cycle

, , , ORCID Icon, &
Pages 1-12 | Received 16 Dec 2018, Accepted 06 May 2019, Published online: 07 Nov 2019

References

  • Ahmadi, M. H., Ahmadi, M. A., Sadaghiani, M. S., Ghazvini, M., Shahriar, S., & Alhuyi Nazari, M. (2018). Ground source heat pump carbon emissions and ground-source heat pump systems for heating and cooling of buildings: A review. Environmental Progress & Sustainable Energy, 37(4), 1241–1265. doi: 10.1002/ep.12802
  • Ahmadi, M. H., Ghazvini, M., Alhuyi Nazari, M., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. doi: 10.1002/er.4282
  • Ahmadi, M. H., Ghazvini, M., Sadeghzadeh, M., Alhuyi Nazari, M., Kumar, R., Naeimi, A., & Ming, T. (2018). Solar power technology for electricity generation: A critical review. Energy Science & Engineering, 6(5), 340–361. doi: 10.1002/ese3.239
  • Akbarian, E., Najafi, B., Jafari, M., Faizollahzadeh Ardabili, S., Shamshirband, S., & Chau, K. (2018). Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine. Engineering Applications of Computational Fluid Mechanics, 12(1), 517–534. doi: 10.1080/19942060.2018.1472670
  • Arora, C. P. (2000). Refrigeration and air conditioning. New Delhi: Tata McGraw-Hill.
  • Bruno, F. (2011). On-site experimental testing of a novel dew point evaporative cooler. Energy and Buildings, 43(12), 3475–3483. doi: 10.1016/j.enbuild.2011.09.013
  • Chau, K. W., & Jiang, Y. W. (2002). Three-dimensional pollutant transport model for the Pearl River Estuary. Water Research, 36(8), 2029–2039. doi: 10.1016/S0043-1354(01)00400-6
  • Chau, K. W., & Jiang, Y. W. (2004). A three-dimensional pollutant transport model in orthogonal curvilinear and sigma coordinate system for Pearl River estuary. International Journal of Environment and Pollution, 21(2), 188. doi: 10.1504/IJEP.2004.004185
  • Chen, Y., Yang, H., & Luo, Y. (2016). Parameter sensitivity analysis of indirect evaporative cooler (IEC) with condensation from primary air. Energy Procedia, 88, 498–504. doi: 10.1016/j.egypro.2016.06.069
  • Cuce, P. M., & Riffat, S. (2016). A state of the art review of evaporative cooling systems for building applications. Renewable and Sustainable Energy Reviews, 54, 1240–1249. doi: 10.1016/j.rser.2015.10.066
  • Duan, Z., Zhan, C., Zhang, X., Mustafa, M., Zhao, X., Alimohammadisagvand, B., & Hasan, A. (2012). Indirect evaporative cooling: Past, present and future potentials. Renewable and Sustainable Energy Reviews, 16(9), 6823–6850. doi: 10.1016/j.rser.2012.07.007
  • Fakhrabadi, F., & Kowsary, F. (2016). Optimal design of a regenerative heat and mass exchanger for indirect evaporative cooling. Applied Thermal Engineering, 102, 1384–1394. doi: 10.1016/j.applthermaleng.2016.03.115
  • Hossein Jahangir, M., Ghazvini, M., Pourfayaz, F., & Hossein Ahmadi, M. (2018). A numerical study into effects of intermittent pump operation on thermal storage in unsaturated porous media. Applied Thermal Engineering. doi: 10.1016/J.APPLTHERMALENG.2018.04.023
  • Hsu, S. T., Lavan, Z., & Worek, W. M. (1989). Optimization of wet-surface heat exchangers. Energy, 14(11), 757–770. doi: 10.1016/0360-5442(89)90009-1
  • Huang, S., Li, W., Lu, J., & Li, Y. (2017). Experimental study on two type of indirect evaporative cooling heat recovery ventilator. Procedia Engineering, 205, 4105–4110. doi: 10.1016/j.proeng.2017.09.910
  • Jahangir, M. H., Ghazvini, M., Pourfayaz, F., Ahmadi, M. H., Sharifpur, M., & Meyer, J. P. (2018). Numerical investigation into mutual effects of soil thermal and isothermal properties on heat and moisture transfer in unsaturated soil applied as thermal storage system. Numerical Heat Transfer, Part A: Applications, 73(7), 466–481. doi: 10.1080/10407782.2018.1449518
  • Jradi, M., & Riffat, S. (2014). Experimental and numerical investigation of a dew-point cooling system for thermal comfort in buildings. Applied Energy, 132, 524–535. doi: 10.1016/j.apenergy.2014.07.040
  • Lee, J., & Lee, D.-Y. (2013). Experimental study of a counter flow regenerative evaporative cooler with finned channels. International Journal of Heat and Mass Transfer, 65, 173–179. doi: 10.1016/j.ijheatmasstransfer.2013.05.069
  • Maisotsenko, V., Gillan, L. E., Heaton, T. L., & Gillan, A. D. (2001, September). Method and plate apparatus for dew point evaporative cooler.
  • Moffat, R. J. (1985). Using uncertainty analysis in the planning of an experiment. Journal of Fluids Engineering, 107(2), 173. doi: 10.1115/1.3242452
  • Mohammadi, A., Ahmadi, M. H., Bidi, M., Ghazvini, M., & Ming, T. (2018). Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Reports, 4, 243–251. doi: 10.1016/j.egyr.2018.03.001
  • Moshari, S., & Heidarinejad, G. (2015). Numerical study of regenerative evaporative coolers for sub-wet bulb cooling with cross- and counter-flow configuration. Applied Thermal Engineering, 89, 669–683. doi: 10.1016/j.applthermaleng.2015.06.046
  • Pesteei, S., Mashoofi, N., Pourahmad, S., & Roshana, A. (2017). Numerical investigation on the effect of a modified corrugated double tube heat exchanger on heat transfer enhancement and exergy losses. International Journal of Heat and Technology, 35(2), 243–248. doi: 10.18280/ijht.350202
  • Porumb, B., Ungureşan, P., Tutunaru, L. F., Şerban, A., & Bălan, M. (2016a). A review of indirect evaporative cooling operating conditions and performances. Energy Procedia, 85, 452–460. doi: 10.1016/j.egypro.2015.12.226
  • Porumb, B., Ungureşan, P., Tutunaru, L. F., Şerban, A., & Bălan, M. (2016b). A review of indirect evaporative cooling technology. Energy Procedia, 85, 461–471. doi: 10.1016/j.egypro.2015.12.228
  • Ramezanizadeh, M., Alhuyi Nazari, M., Ahmadi, M. H., & Chau, K. (2019). Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Engineering Applications of Computational Fluid Mechanics, 13(1), 40–47. doi: 10.1080/19942060.2018.1518272
  • Riangvilaikul, B., & Kumar, S. (2010a). An experimental study of a novel dew point evaporative cooling system. Energy and Buildings, 42(5), 637–644. doi: 10.1016/j.enbuild.2009.10.034
  • Riangvilaikul, B., & Kumar, S. (2010b). Numerical study of a novel dew point evaporative cooling system. Energy and Buildings, 42(11), 2241–2250. doi: 10.1016/j.enbuild.2010.07.020
  • Tzivanidis, C., Antonopoulos, K. A., & Gioti, F. (2011). Numerical simulation of cooling energy consumption in connection with thermostat operation mode and comfort requirements for the Athens buildings. Applied Energy, 88(8), 2871–2884. doi: 10.1016/j.apenergy.2011.01.050
  • Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications – A review. Applied Energy, 115, 164–173. doi: 10.1016/j.apenergy.2013.10.062
  • Zhao, X., Li, J. M., & Riffat, S. B. (2008). Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling. Applied Thermal Engineering, 28(14–15), 1942–1951. doi: 10.1016/j.applthermaleng.2007.12.006