5,430
Views
15
CrossRef citations to date
0
Altmetric
Articles

Modeling natural gas compressibility factor using a hybrid group method of data handling

, , , ORCID Icon, , ORCID Icon & show all
Pages 27-37 | Received 14 Aug 2019, Accepted 09 Oct 2019, Published online: 07 Nov 2019

References

  • Anitescu, C., Atroshchenko, E., Alajlan, N., & Rabczuk, T. (2019). Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59(1), 345–359.
  • Azizi, N., Behbahani, R., & Isazadeh, M.A. (2010). An efficient correlation for calculating compressibility factor of natural gases. Journal of Natural Gas Chemistry, 19(6), 642–645.
  • Beggs, D. H., & Brill, J. P. (1973). A study of two-phase flow in inclined pipes. Journal of Petroleum Technology, 25(05), 607–617.
  • Brill, J., & Beggs, H. (1973). Two phase flow in pipes. Intercomp Course. The Hague: University of Tulsa.
  • Chuntian, C., & Chau, K.-W. (2002). Three-person multi-objective conflict decision in reservoir flood control. European Journal of Operational Research, 142(3), 625–631.
  • Dargahi-Zarandi, A., Hemmati-Sarapardeh, A., Hajirezaie, S., Dabir, B., & Atashrouz, S. (2017). Modeling gas/vapor viscosity of hydrocarbon fluids using a hybrid GMDH-type neural network system. Journal of Molecular Liquids, 236, 162–171.
  • Dashtian, H., Bakhshian, S., Hajirezaie, S., Nicot, J.-P., & Hosseini, S. A. (2019). Convection-diffusion-reaction of CO2-enriched brine in porous media: A pore-scale study. Computers & Geosciences, 87(6), 234–245.
  • Dranchuk, P. M., & Abou-Kassem, H. (1975). Calculation of Z factors for natural gases using equations of state. Journal of Canadian Petroleum Technology, 14(03), 97–124.
  • Dranchuk, P. M., Purvis, R. A., & Robinson, D. B. (1973). Computer calculation of natural gas compressibility factors using the Standing and Katz correlation. Annual Technical Meeting.
  • Dranchuk, P. M., Purvis, R. A., & Robinson, D. B. (1974). Computer calculation of natural gas compressibility factors using the Standing and Katz correlation. Annual Technical Meeting.
  • Elsharkawy, A. M. (2004). Efficient methods for calculations of compressibility, density and viscosity of natural gases. Fluid Phase Equilibria, 218(1), 1–13.
  • Elsharkawy, A. M., & Foda, S. G. (1998). EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs. Energy & Fuels, 12(2), 353–364.
  • Firoozabadi, A. (1999). Thermodynamics of hydrocarbon reservoirs. New York: McGraw-Hill.
  • Fotovatikhah, F., Herrera, M., Shamshirband, S., Chau, K.-W., Faizollahzadeh Ardabili, S., & Piran, M. J. (2018). Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics, 12(1), 411–437.
  • Gopal, V. (1977a). Gas z-factor equations developed for computer. Oil and Gas Journal, 75(8), 8–13.
  • Gopal, V. (1977b, August 8). Gas z-factor equations developed for computer. Oil and Gas Journal, 1977, 58–60.
  • Guo, H., Zhuang, X., & Rabczuk, T. (2019). A deep collocation method for the bending analysis of Kirchhoff plate. CMC-Computers Materials & Continua, 58(2), 433–456.
  • Hajirezaie, S., Hemmati-Sarapardeh, A., Mohammadi, A. H., Pournik, M., & Kamari, A. (2015). A smooth model for the estimation of gas/vapor viscosity of hydrocarbon fluids. Journal of Natural Gas Science and Engineering, 26, 1452–1459.
  • Hajirezaie, S., Hemmati, S. A., & Ayatollahi, S. (2014). Soft computing model for prediction of sour and natural gas viscosity.
  • Hajirezaie, S., Pajouhandeh, A., Hemmati-Sarapardeh, A., Pournik, M., & Dabir, B. (2017). Development of a robust model for prediction of under-saturated reservoir oil viscosity. Journal of Molecular Liquids, 229, 89–97.
  • Hajirezaie, S., Wu, X., Soltanian, M. R., & Sakha, S. (2019). Numerical simulation of mineral precipitation in hydrocarbon reservoirs and wellbores. Fuel, 238, 462–472.
  • Hall, K. R., & Yarborough, L. (1973). A new equation of state for Z-factor calculations. Oil and Gas Journal, 71(25), 82.
  • Heidaryan, E., Moghadasi, J., & Rahimi, M. (2010). New correlations to predict natural gas viscosity and compressibility factor. Journal of Petroleum Science and Engineering, 73(1–2), 67–72.
  • Hemmati-Sarapardeh, A., & Mohagheghian, E. (2017). Modeling interfacial tension and minimum miscibility pressure in paraffin-nitrogen systems: Application to gas injection processes. Fuel, 205, 80–89.
  • Hemmati-Sarapardeh, A., Tashakkori, M., Hosseinzadeh, M., Mozafari, A., & Hajirezaie, S. (2016). On the evaluation of density of ionic liquid binary mixtures: Modeling and data assessment. Journal of Molecular Liquids, 222, 745–751.
  • Kamari, A., Gharagheizi, F., Mohammadi, A. H., & Ramjugernath, D. (2016). A corresponding states-based method for the estimation of natural gas compressibility factors. Journal of Molecular Liquids, 216, 25–34.
  • Kamari, A., Hemmati-Sarapardeh, A., Mirabbasi, S.-M., Nikookar, M., & Mohammadi, A. H. (2013). Prediction of sour gas compressibility factor using an intelligent approach. Fuel Processing Technology, 116, 209–216.
  • Kamari, A., Pournik, M., Rostami, A., Amirlatifi, A., & Mohammadi, A. H. (2017). Characterizing the CO2-brine interfacial tension (IFT) using robust modeling approaches: A comparative study. Journal of Molecular Liquids, 246, 32–38.
  • Kamari, A., Safiri, A., & Mohammadi, A. H. (2015). Compositional model for estimating asphaltene precipitation conditions in live reservoir oil systems. Journal of Dispersion Science and Technology, 36(3), 301–309.
  • Kamyab, M., Sampaio, J. H., Jr., Qanbari, F., & Eustes, A. W., III (2010). Using artificial neural networks to estimate the z-factor for natural hydrocarbon gases. Journal of Petroleum Science and Engineering, 73(3–4), 248–257.
  • Kumar, N. (2004). Compressibility factors for natural and sour reservoir gases by correlations and cubic equations of state. Texas: Texas Tech University.
  • Lawal, A. (1999). Application of the Lawal-Lake-Silberberg equation-of-state to thermodynamic and transport properties of fluid and fluid mixtures.
  • McCain, W. D., Jr. (2017). Properties of petroleum fluids. Florida: PennWell Corporation.
  • McLeod, W. R. (1968). Applications of molecular refraction to the principle of corresponding states. Oklahoma: The University of Oklahoma.
  • Moazenzadeh, R., Mohammadi, B., Shamshirband, S., & Chau, K.-w. (2018). Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics, 12(1), 584–597.
  • Patel, N. C., & Teja, A. S. (1982). A new cubic equation of state for fluids and fluid mixtures. Chemical Engineering Science, 37(3), 463–473.
  • Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.
  • Robinson, R., Jr., & Jacoby, R. (1965). Better compressibility factors. Hydrocarbon Processing, 44(4), 141–145.
  • Rostami, A., Kamari, A., Panacharoensawad, E., & Hashemi, A. (2018). New empirical correlations for determination of minimum miscibility pressure (MMP) during N2-contaminated lean gas flooding. Journal of the Taiwan Institute of Chemical Engineers, 91, 369–382.
  • Sanjari, E., & Lay, E. N. (2012a). An accurate empirical correlation for predicting natural gas compressibility factors. Journal of Natural Gas Chemistry, 21(2), 184–188.
  • Sanjari, E., & Lay, E. N. (2012b). Estimation of natural gas compressibility factors using artificial neural network approach. Journal of Natural Gas Science and Engineering, 9, 220–226.
  • Shariaty, S., Khorsand Movaghar, M. R., & Vatandoost, A. (2019). A new model for estimating the gas compressibility factor using group method of data handling algorithm (case study). Asia-Pacific Journal of Chemical Engineering, 14(3), e2307.
  • Shateri, M., Ghorbani, S., Hemmati-Sarapardeh, A., & Mohammadi, A. H. (2015). Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. Journal of the Taiwan Institute of Chemical Engineers, 50, 131–141.
  • Simon, R., & Briggs, J. E. (1964). Application of Benedict-Webb-Rubin equation of state to hydrogen sulfide-hydrocarbon mixtures. AIChE Journal, 10(4), 548–550.
  • Soave, G. (1972). Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 27(6), 1197–1203.
  • Standing, M. B., & Katz, D. L. (1942). Density of natural gases. Transactions of the AIME, 146(01), 140–149.
  • Taherei Ghazvinei, P., Hassanpour Darvishi, H., Mosavi, A., Yusof, K. b. W., Alizamir, M., Shamshirband, S., & Chau, K.-w. (2018). Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Engineering Applications of Computational Fluid Mechanics, 12(1), 738–749.
  • Van Der Waals, J. D., & Rowlinson, J. S. (2004). On the continuity of the gaseous and liquid states. Newyork: Courier Corporation.
  • Van der Waals, J. D., Threfall, R., Adair, J. F., & Roth, F. (1873). The continuity of the liquid and gaseous states.
  • Whitson, C. H., & Torp, S. B. (1981). Evaluating constant volume depletion data. SPE Annual Technical Conference and Exhibition.
  • Wichert, E., & Aziz, K. (1972). Calculate Zs for sour gases. Hydrocarbon Processing, 51(5), 119–122.
  • Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K.-W. (2019). An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 77, 324–340.