4,393
Views
21
CrossRef citations to date
0
Altmetric
Articles

Study of the hydraulic transport of non-spherical particles in a pipeline based on the CFD-DEM

, , &
Pages 53-69 | Received 15 Apr 2019, Accepted 17 Oct 2019, Published online: 07 Nov 2019

References

  • Abbaszadeh Molaei, E., Yu, A. B., & Zhou, Z. Y. (2019). CFD-DEM modelling of mixing and segregation of binary mixtures of ellipsoidal particles in liquid fluidizations. Journal of Hydrodynamics, Series B, 31(1), 1–21.
  • Akbarian, E., Bahman, N., Mohsen, J., Sina, F. A., Shahaboddin, S., & Kwok-wing, C. (2018). Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine. Engineering Applications of Computational Fluid Mechanics, 12(1), 517–534.
  • Antony, S. J. (2007). Link between single-particle properties and macroscopic properties in particulate assemblies: Role of structures within structures. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences, 365(1861), 2879–2891.
  • Capecelatro, J., & Desjardins, O. (2013a). An Euler–Lagrange strategy for simulating particle-laden flows. Journal of Computational Physics, 238(31), 1–31.
  • Capecelatro, J., & Desjardins, O. (2013b). Eulerian–Lagrangian modeling of turbulent liquid–solid slurries in horizontal pipes. International Journal of Multiphase Flow, 55, 64–79.
  • Chu, K. W., Wang, B., Xu, D. L., Chen, Y. X., & Yu, A. B. (2011). CFD-DEM simulation of the gas-solid flow in a cyclone separator (EI). Chemical Engineering Science, 66(5), 834–847.
  • Cleary, P. W. (2009). Industrial particle flow modelling using discrete element method. Engineering Computations, 26(6), 698–743.
  • Cleary, P. W. (2010). DEM prediction of industrial and geophysical particle flows. Particuology, 8(2), 106–118.
  • Cleary, P. W. (2013). Particulate mixing in a plough share mixer using DEM with realistic shaped particles. Powder Technology, 248(2), 103–120.
  • Cundall, P. A., & Strack, O. D. L. (1979). Discussion: A discrete numerical model for granular assemblies. Geotechnique, 29(30), 331–336.
  • Das, N., Thomas, S., Kopmann, J., Donovan, C., Hurt, C., Daouadji, A., … Sukumaran, B. (2011). Modeling granular particle shape using discrete element method. In Geo-frontiers 2011: Advances in geotechnical engineering (pp. 4293–4302).
  • Deen, N. G., Annaland, M. V. S., Hoef, M. A. V. D., & Kuipers, J. A. M. (2007). Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 62(1), 28–44.
  • Di Felice, R. (1994). The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, 20(1), 153–159.
  • Emeriault, F., & Cambou, B. (1996). Micromechanical modelling of anisotropic non-linear elasticity of granular medium. International Journal of Solids & Structures, 33(18), 2591–2607.
  • Faizollahzadeh Ardabili, S., Najafi, B., Shamshirband, S., Minaei Bidgoli, B., Deo, R. C., & Chau, K.-W. (2018). Computational intelligence approach for modeling hydrogen production: A review. Engineering Applications of Computational Fluid Mechanics, 12(1), 438–458.
  • Fraige, F. Y., & Langston, P. A. (2006). Horizontal pneumatic conveying: A 3D distinct element model. Granular Matter, 8(2), 67–80.
  • Fraige, F. Y., Langston, P. A., & Chen, G. Z. (2008). Distinct element modelling of cubic particle packing and flow. Powder Technology, 186(3), 224–240.
  • Ganser, G. H. (1993). A rational approach to drag prediction of spherical and nonspherical particles. Powder Technology, 77(2), 143–152.
  • Ghalandari, M., Mirzadeh Koohshahi, E., Mohamadian, F., Shamshirband, S., & Chau, K. W. (2019). Numerical simulation of nanofluid flow inside a root canal. Engineering Applications of Computational Fluid Mechanics, 13(1), 254–264.
  • Herrmann, H. J., & Luding, S. (1998). Modeling granular media on the computer. Continuum Mechanics & Thermodynamics, 10(4), 189–231.
  • Hilton, J. E., & Cleary, P. W. (2011). The influence of particle shape on flow modes in pneumatic conveying. Chemical Engineering Science, 66(3), 231–240.
  • Hölzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184(3), 361–365.
  • Hussainov, M., Kartushinsky, A., Mulgi, A., & Rudi, Ü. (1996). Gas-solid flow with the slip velocity of particles in a horizontal channel. Journal of Aerosol Science, 27(1), 41–59.
  • Karimi, H., & Dehkordi, A. M. (2015). Prediction of equilibrium mixing state in binary particle spouted beds: Effects of solids density and diameter differences, gas velocity, and bed aspect ratio. Advanced Powder Technology, 26(5), 1371–1382.
  • Kruggel-Emden, H., & Elskamp, F. (2014). Modeling of screening processes with the discrete element method involving non-spherical particles. Chemical Engineering & Technology, 37(5), 847–856.
  • Kruggel-Emden, H., & Oschmann, T. (2014). Numerical study of rope formation and dispersion of non-spherical particles during pneumatic conveying in a pipe bend. Powder Technology, 268(1), 219–236.
  • Kuang, S. B., Zou, R. P., Pan, R. H., & Yu, A. B. (2012). Gas–solid flow and energy dissipation in inclined pneumatic conveying. Industrial & Engineering Chemistry Research, 51(43), 14289–14302.
  • Li, K., Kuang, S. B., Pan, R. H., & Yu, A. B. (2014). Numerical study of horizontal pneumatic conveying: Effect of material properties. Powder Technology, 251(1), 15–24.
  • Liu, G., Tang, Y., & Li, B. (2017). Movement, deposition and influence laws of impurities in the product oil pipelines. Oil & Gas Storage and Transportation, 36(6), 708–715.
  • Lu, G., Third, J. R., & Müller, C. R. (2012). Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chemical Engineering Science, 78(34), 226–235.
  • Lu, G., Third, J. R., & Müller, C. R. (2015). Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chemical Engineering Science, 127, 425–465.
  • Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 140(140), 223–256.
  • Ma, H., Zhao, Y., & Cheng, Y. (2019). CFD-DEM modeling of rod-like particles in a fluidized bed with complex geometry. Powder Technology, 344, 673–683.
  • Marchioli, C., Giusti, A., Salvetti, M. V., & Soldati, A. (2003). Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. International Journal of Multiphase Flow, 29(6), 1017–1038.
  • Miedema, S. A. (2015). A head loss model for slurry transport in the heterogeneous regime. Ocean Engineering, 106, 360–370.
  • Miedema, S. A. (2016). The heterogeneous to homogeneous transition for slurry flow in pipes. Ocean Engineering, 123, 422–431.
  • Miedema, S. A., & Ramsdell, R. C. (2016). The delft head loss & limit deposit velocity framework (DHLLDV). Journal of Dredging, 15(2), 1.
  • Mills, D. (2004). An investigation of the unstable region for dense phase conveying in sliding bed flow. Granular Matter, 6(2–3), 173–177.
  • Mou, B., He, B.-J., Zhao, D.-X., & Chau, K.-W. (2017). Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293–309.
  • Müller, C. R., Scott, S. A., Holland, D. J., Clarke, B. C., Sederman, A. J., Dennis, J. S., & Gladden, L. F. (2009). Validation of a discrete element model using magnetic resonance measurements. Particuology, 7(4), 297–306.
  • Patankar, N. A., & Joseph, D. D. (2001). Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. International Journal of Multiphase Flow, 27(10), 1659–1684.
  • Ramezanizadeh, M., Alhuyi Nazari, M., Ahmadi, M. H., & Chau, K.-W. (2019). Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Engineering Applications of Computational Fluid Mechanics, 13(1), 40–47.
  • Saffman, G. P. (1962). On the stability of laminar flow of a dusty gas. Journal of Fluid Mechanics, 13(1), 120–128.
  • Televantos, Y., Shook, C., Carleton, A., & Streat, M. (2010). Flow of slurries of coarse particles at high solids concentrations. Canadian Journal of Chemical Engineering, 57(3), 255–262.
  • Tran-Cong, S., Gay, M., & Michaelides, E. E. (2004). Drag coefficients of irregularly shaped particles. Powder Technology, 139(1), 21–32.
  • Tsuji, Y. (2000). Activities in discrete particle simulation in Japan. Powder Technology, 113(3), 278–286.
  • Uzi, A., & Levy, A. (2018). Flow characteristics of coarse particles in horizontal hydraulic conveying. Powder Technology, 238, 1–31.
  • Vlasák, P., Chára, Z., Krupiěka, J., & Konfrět, J. (2014). Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes. Journal of Hydrology & Hydromechanics, 62(3), 241–247.
  • Wang, S., Luo, K., Hu, C., & Fan, J. (2018). Particle-scale investigation of heat transfer and erosion characteristics in a three-dimensional circulating fluidized bed. Industrial & Engineering Chemistry Research, 57, 6774–6789.
  • Wang, L., Park, J.-Y., & Fu, Y. (2007). Representation of real particles for DEM simulation using X-ray tomography. Construction & Building Materials, 21(2), 338–346.
  • Wasp, E. J., Kenny, J. P., & Gandhi, R. L. (1977). Solid-liquid flow slurry pipeline transportation. Bulk Materials Handling, 1, 4.
  • Wolfshtein, M. (1969). The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient. International Journal of Heat & Mass Transfer, 12(3), 301–318.
  • Xu, L., Luo, K., Zhao, Y., Fan, J., & Cen, K. (2018). Multiscale investigation of tube erosion in fluidized bed based on CFD-DEM simulation. Chemical Engineering Science, 183, 60–74.