2,922
Views
17
CrossRef citations to date
0
Altmetric
Articles

Assessment of RANS turbulence models and Zwart cavitation model empirical coefficients for the simulation of unsteady cloud cavitation

& ORCID Icon
Pages 151-167 | Received 29 May 2019, Accepted 12 Nov 2019, Published online: 26 Nov 2019

References

  • Akbarian, E., Najafi, B., Jafari, M., Ardabili, S. F., Shamshirband, S., & Chau, K.-W. (2018). Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine. Engineering Applications of Computational Fluid Mechanics, 12(1), 517–534. doi: 10.1080/19942060.2018.1472670
  • ANSYS. (2015). Release 16.2, help system, CFX theory guide. Pittsburgh: ANSYS, Inc.
  • Ayli, E., Celebioglu, K., & Aradag, S. (2016). Determination and generalization of the effects of design parameters on Francis turbine runner performance. Engineering Applications of Computational Fluid Mechanics, 10(1), 545–564. doi: 10.1080/19942060.2016.1213664
  • Bensow, R. E. (2011, June). Simulation of the unsteady cavitation on the Delft Twist11 foil using RANS, DES and LES. In Second international symposium on marine propulsors, Hamburg, Germany.
  • Bilus, I., Morgut, M., & Nobile, E. (2013). Simulation of sheet and cloud cavitation with homogenous transport models. International Journal of Simulation Modelling, 12(2), 94–106. doi: 10.2507/IJSIMM12(2)3.229
  • Brennen, C. E. (1995). Cavitation and bubble dynamics. Oxford: Cambridge University Press.
  • Budich, B., Neuner, S., Schmidt, S. J., & Adams, N. A. (2015). Numerical investigation of shedding partial cavities over a sharp wedge. In Journal of physics: Conference series (Vol. 656, No. 1, p. 012122). IOP Publishing.
  • Chen, Y., Hu, Y., & Zhang, S. (2019). Structure optimization of submerged water jet cavitating nozzle with a hybrid algorithm. Engineering Applications of Computational Fluid Mechanics, 13(1), 591–608. doi: 10.1080/19942060.2019.1628106
  • Couty, P. (2002). Physical investigation of cavitation vortex collapse (No. THESIS). EPFL.
  • Dupont, P. (1993). Etude de la dynamique d’une poche de cavitation partielle en vue de la prédiction de l’érosion dans les turbomachines hydrauliques (No. THESIS). EPFL.
  • Escaler, X., Farhat, M., Egusquiza, E., & Avellan, F. (2007). Dynamics and intensity of erosive partial cavitation. Journal of Fluids Engineering, 129(7), 886–893. doi: 10.1115/1.2742748
  • Ganesh, H., Mäkiharju, S., & Ceccio, S. (2016). Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. Journal of Fluid Mechanics, 802, 37–78. doi: 10.1017/jfm.2016.425
  • Ghahramani, E., Arabnejad, M. H., & Bensow, R. E. (2019). A comparative study between numerical methods in simulation of cavitating bubbles. International Journal of Multiphase Flow, 111, 339–359. doi: 10.1016/j.ijmultiphaseflow.2018.10.010
  • Ghalandari, M., Koohshahi, E. M., Mohamadian, F., Shamshirband, S., & Chau, K.-W. (2019). Numerical simulation of nanofluid flow inside a root canal. Engineering Applications of Computational Fluid Mechanics, 13(1), 254–264. doi: 10.1080/19942060.2019.1578696
  • Goncalvès, E. (2011). Numerical study of unsteady turbulent cavitating flows. European Journal of Mechanics - B/Fluids, 30(1), 26–40. doi: 10.1016/j.euromechflu.2010.08.002
  • Gonçalves, E., & Patella, R. F. (2009). Numerical simulation of cavitating flows with homogeneous models. Computers & Fluids, 38(9), 1682–1696. doi: 10.1016/j.compfluid.2009.03.001
  • Gopalan, S., & Katz, J. (2000). Flow structure and modeling issues in the closure region of attached cavitation. Physics of Fluids, 12(4), 895–911. doi: 10.1063/1.870344
  • Hejranfar, K., Ezzatneshan, E., & Fattah-Hesari, K. (2015). A comparative study of two cavitation modeling strategies for simulation of inviscid cavitating flows. Ocean Engineering, 108, 257–275. doi: 10.1016/j.oceaneng.2015.07.016
  • Ismail, B. C., Ghia, U., Roache, P. J., Freitas, C. J., & Coloman, H. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130, 078001-1–078001-4.
  • Kim, S.-e. (2009). A numerical study of unsteady cavitation on a hydrofoil. In Proceedings of the 7th international symposium on cavitation CAV2009 August 17–22, 2009, Ann Arbor, Michigan, USA.
  • Kinzel, M., Lindau, J., Peltier, L., Kunz, R., & Sankaran, V. (2007, November). Detached-eddy simulations for cavitating flows. In 18th AIAA computational fluid dynamics conference, p. 4098.
  • Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., … Govindan, T. R. (2000). A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids, 29(8), 849–875. doi: 10.1016/S0045-7930(99)00039-0
  • Mani, K. V., Cervone, A., & Hickey, J. P. (2017). Turbulence modeling of cavitating flows in liquid rocket turbopumps. Journal of Fluids Engineering, 139(1), 011301. doi: 10.1115/1.4034096
  • Morgut, M., Nobile, E., & Biluš, I. (2011). Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. International Journal of Multiphase Flow, 37(6), 620–626. doi: 10.1016/j.ijmultiphaseflow.2011.03.005
  • Mosavi, A., Shamshirband, S., Salwana, E., Chau, K.-W., & Tah, J. (2019). Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Engineering Applications of Computational Fluid Mechanics, 13(1), 482–492. doi: 10.1080/19942060.2019.1613448
  • Mou, B., Bao-Jie He, B.-J., Zhao, D.-X., & Chau, K.-W. (2017). Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293–309. doi: 10.1080/19942060.2017.1281845
  • Pascarella, C., Salvatore, V., & Ciucci, A. (2003, November). Effects of speed of sound variation on unsteady cavitating flows by using a barotropic model. In 5th international symposium on cavitation CAV2003, Osaka, Japan.
  • Pendar, M. R., & Roohi, E. (2016). Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models. Ocean Engineering, 112, 287–306. doi: 10.1016/j.oceaneng.2015.12.010
  • Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., & Chau, K.-W. (2019). Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Engineering Applications of Computational Fluid Mechanics, 13(1), 40–47. doi: 10.1080/19942060.2018.1518272
  • Reboud, J. L., Stutz, B., & Coutier, O. (1998, April). Two phase flow structure of cavitation: Experiment and modeling of unsteady effects. In 3rd international symposium on cavitation CAV1998, Grenoble, France (Vol. 26).
  • Roohi, E., Pendar, M. R., & Rahimi, A. (2016). Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models. Applied Mathematical Modelling, 40(1), 542–564. doi: 10.1016/j.apm.2015.06.002
  • Rouse, H., & McNown, J. S. (1948). Cavitation and pressure distribution, head forms at zero angel of yaw, studies in engineering. Bulletin, 32.
  • Schenke, S., Melissaris, T., & van Terwisga, T. J. C. (2019). On the relevance of kinematics for cavitation implosion loads. Physics of Fluids, 31(5), 052102. doi: 10.1063/1.5092711
  • Schenke, S., & van Terwisga, T. J. (2019). An energy conservative method to predict the erosive aggressiveness of collapsing cavitating structures and cavitating flows from numerical simulations. International Journal of Multiphase Flow, 111, 200–218. doi: 10.1016/j.ijmultiphaseflow.2018.11.016
  • Schnerr, G. H., & Sauer, J. (2001, May). Physical and numerical modeling of unsteady cavitation dynamics. In Fourth international conference on multiphase flow (Vol. 1). ICMF New Orleans.
  • Sedlar, M., Ji, B., Kratky, T., Rebok, T., & Huzlik, R. (2016). Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil. Ocean Engineering, 123, 357–382. doi: 10.1016/j.oceaneng.2016.07.030
  • Senocak, I., & Shyy, W. (2002, January). Evaluations of cavitation models for Navier-Stokes computations. In ASME 2002 joint US-European fluids engineering division conference (pp. 395–401). American Society of Mechanical Engineers.
  • Shen, Y., & Dimotakis, P. E. (1989, August). The influence of surface cavitation on hydrodynamic forces. In American towing tank conference, 22nd.
  • Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124(3), 617–624. doi: 10.1115/1.1486223
  • Tseng, C. C., & Wang, L. J. (2014). Investigations of empirical coefficients of cavitation and turbulence model through steady and unsteady turbulent cavitating flows. Computers & Fluids, 103, 262–274. doi: 10.1016/j.compfluid.2014.07.026
  • Utturkar, Y., Wu, J., Wang, G., & Shyy, W. (2005). Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Progress in Aerospace Sciences, 41(7), 558–608. doi: 10.1016/j.paerosci.2005.10.002
  • Vaidyanathan, R., Senocak, I., Wu, J., & Shyy, W. (2003). Sensitivity evaluation of a transport-based turbulent cavitation model. Journal of Fluids Engineering, 125(3), 447–458. doi: 10.1115/1.1566048
  • Van Rijsbergen, M., Foeth, E. J., Fitzsimmons, P., & Boorsma, A. (2012). High-speed video observations and acoustic-impact measurements on a NACA0015 Foil. In Proceedings of the 8th international symposium on cavitation, CAV2012, Singapore.
  • Wang, G., Senocak, I., Shyy, W., Ikohagi, T., & Cao, S. (2001). Dynamics of attached turbulent cavitating flows. Progress in Aerospace Sciences, 37(6), 551–581. doi: 10.1016/S0376-0421(01)00014-8
  • Yuan, C., Song, J., & Liu, M. (2019). Comparison of compressible and incompressible numerical methods in simulation of a cavitating jet through a poppet valve. Engineering Applications of Computational Fluid Mechanics, 13(1), 67–90. doi: 10.1080/19942060.2018.1552202
  • Zwart, P. J., Gerber, A. G., & Belamri, T. (2004, May). A two-phase flow model for predicting cavitation dynamics. In Fifth international conference on multiphase flow (Vol. 152), Yokohama, Japan.