3,125
Views
47
CrossRef citations to date
0
Altmetric
Articles

Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms

, , , , ORCID Icon, ORCID Icon & show all
Pages 311-322 | Received 01 Sep 2019, Accepted 30 Dec 2019, Published online: 24 Jan 2020

References

  • Alizadeh, M. J., Jafari Nodoushan, E., Kalarestaghi, N., & Chau, K. W. (2017). Toward multi-day-ahead forecasting of suspended sediment concentration using ensemble models. Environmental Science and Pollution Research, 24(36), 28017–28025. doi: 10.1007/s11356-017-0405-4
  • Archer, K. J., & Kimes, R. V. (2008). Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis, 52(4), 2249–2260. doi: 10.1016/j.csda.2007.08.015
  • Azamathulla, H. M., & Ghani, A. A. (2011). Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resources Management, 25(6), 1537–1544. doi: 10.1007/s11269-010-9759-9
  • Behnood, A., Behnood, V., Gharehveran, M. M., & Alyamac, K. E. (2017). Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm. Construction and Building Materials, 142, 199–207. doi: 10.1016/j.conbuildmat.2017.03.061
  • Bencala, K. E., & Walters, R. A. (1983). Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model. Water Resource Research, 19(3), 718–724. doi: 10.1029/WR019i003p00718
  • Breiman, L. (2001). Random forests. Machine Learning, 1(5), 32–45.
  • Chau, K. W. (2000). Transverse mixing coefficient measurements in an open rectangular channel. Advances in Environmental Research, 4(4), 287–294. doi: 10.1016/S1093-0191(00)00028-9
  • Chen, X. U., & Chau, K. W. (2016). A hybrid double feedforward neural network for suspended sediment load estimation. Water Resources Management, 30(7), 2179–2194. doi: 10.1007/s11269-016-1281-2
  • Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. doi: 10.1016/j.scitotenv.2018.10.064
  • Dehghani, M., Riahi-Madvar, H., Hooshyaripor, F., Mosavi, A., Shamshirband, S., Zavadskas, E. K., & Chau, K. (2019). Prediction of hydropower generation using grey wolf optimization adaptive neuro-fuzzy inference system. Energies, 12(12), 289. doi: 10.3390/en12020289
  • Esmaeilzadeh, B., Sattari, M. T., & Samadianfard, S. (2017). Performance evaluation of ANNs and an M5 model tree in Sattarkhan Reservoir inflow prediction. ISH Journal of Hydraulic Engineering, 23(3), 283–292. doi: 10.1080/09715010.2017.1308277
  • Etemad-Shahidi, A., & Taghipour, M. (2012). Predicting longitudinal dispersion coefficient in natural streams using M5’ model tree. Journal of Hydraulic Engineering, 138(6), 542–554. doi: 10.1061/(ASCE)HY.1943-7900.0000550
  • Fischer, H. B. (1968). Dispersion predictions in natural streams. Journal of the Sanitary Engineering Division, ASCE, 94(5), 927–943.
  • Fischer, H. B. (1979). Mixing in inland and coastal waters. San Diego, CA: Academic Press.
  • Graf, B. (1995). Observed and predicted velocity and longitudinal dispersion at steady and unsteady flow, Colorado River, Glen Canyon Dam to Lake Mead. Water Resources Bulletin, 31(2), 265–281. doi: 10.1111/j.1752-1688.1995.tb03379.x
  • Graf, R., Zhu, S., & Sivakumar, B. (2019). Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. Journal of Hydrology, 578, 124115. doi: 10.1016/j.jhydrol.2019.124115
  • Houichi, L., Dechemi, N., Heddam, S., & Achour, B. (2012). An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel. Journal of Hydroinformatics, 15(1), 147–154. doi: 10.2166/hydro.2012.138
  • Jirka, G. H. (2004). Mixing and dispersion in rivers. London: Taylor and Francis, pp. 13–27.
  • Julínek, T., & Říha, J. (2017). Longitudinal dispersion in an open channel determined from a tracer study. Environmental Earth Sciences, 76(17), 592. doi: 10.1007/s12665-017-6913-1
  • Kalteh, A. M. (2013). Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Computers & Geosciences, 54, 1–8. doi: 10.1016/j.cageo.2012.11.015
  • Kargar, K., Sadegh Safari, M. J., Mohammadi, M., & Samadianfard, S. (2019). Sediment transport modeling in open channels using neuro-fuzzy and gene expression programming techniques. Water Science and Technology, 79(12), 2318–2327. doi: 10.2166/wst.2019.229
  • Kashefipour, S. M., & Falconer, R. A. (2002). Longitudinal dispersion coefficients in natural channels. Water Resource, 36, 1596–1608.
  • Li, X., Liu, H., & Yin, M. (2013). Differential evolution for prediction of longitudinal dispersion coefficients in natural streams. Water Resources Management, 27(15), 5245–5260.
  • McQuivey, R. S., & Keefer, T. N. (1974). Simple method for predicting dispersion in streams. Journal of Environmental Engineering, 100(4), 997–1011.
  • Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536. doi: 10.3390/w10111536
  • Noori, R., Deng, Z., Kiaghadi, A., & Kachoosangi, F. T. (2015). How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? Journal of Hydraulic Engineering, 142(1), 04015039. doi: 10.1061/(ASCE)HY.1943-7900.0001062
  • Nordin, C. F., & Sabol, G. V. (1974). Empirical data on longitudinal dispersion in rivers. Washington, DC: US Geological Survey Water Resource Investigation 20-74.
  • Olyaie, E., Banejad, H., Chau, K. W., & Melesse, A. M. (2015). A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environmental Monitoring and Assessment, 187, 189. doi: 10.1007/s10661-015-4381-1
  • Pai, P., & Hong, W. (2007). A recurrent support vector regression model in rainfall forecasting. Hydrological Process, 21, 819–827. doi: 10.1002/hyp.6323
  • Piotrowski, A. P., & Napiorkowski, J. J. (2013). A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modeling. Journal of Hydrology, 476, 97–111. doi: 10.1016/j.jhydrol.2012.10.019
  • Pourabadei, M., & Kashefipour, S. M. (2007). Investigation of flow parameters on dispersion coefficient of pollutants in canal. In Proceedings of the 6th International symposium river engineering, October (pp. 16–18).
  • Qasem, S. N., Samadianfard, S., Kheshtgar, S., Jarhan, S., Kisi, O., Shamshirband, S., & Chau, K. W. (2019a). Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates. Engineering Applications of Computational Fluid Mechanics, 13(1), 177–187. doi: 10.1080/19942060.2018.1564702
  • Qasem, S. N., Samadianfard, S., Nahand, H. S., Mosavi, A., Shamshirband, S., & Chau, K. W. (2019b). Estimating daily dew point temperature using machine learning algorithms. Water, 11(3), 582. doi: 10.3390/w11030582
  • Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the Australian joint conference on artificial Intelligence, world scientific (pp. 343–348). Singapore.
  • Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge, MA: MIT Press.
  • Riahi-Madvar, H., Ayyoubzadeh, S. A., Khadangi, E., & Ebadzadeh, M. M. (2009). An expert system for predicting longitudinal dispersion coefficient in natural streams by using ANFIS. Expert Systems with Applications, 36(4), 8589–8596. doi: 10.1016/j.eswa.2008.10.043
  • Rutherford, J. C. (1994). River mixing. Chichester, UK: Wiley, p. 347.
  • Sahay, R. R. (2011). Prediction of longitudinal dispersion coefficients in natural rivers using artificial neural network. Environmental Fluid Mechanics, 11(3), 247–261. doi: 10.1007/s10652-010-9175-y
  • Sahay, R. R., & Dutta, S. (2009). Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydrology Research, 40(6), 544–552. doi: 10.2166/nh.2009.014
  • Samadianfard, S., Delirhasannia, R., Torabi Azad, M., Samadianfard, S., & Jeihouni, M. (2016). Intelligent analysis of global warming effects on sea surface temperature in Hormuzgan Coast, Persian Gulf. International Journal of Global Warming, 9(4), 452–466. doi: 10.1504/IJGW.2016.076331
  • Samadianfard, S., Ghorbani, M. A., & Mohammadi, B. (2018). Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm. Information Processing in Agriculture, 5(4), 465–476. doi: 10.1016/j.inpa.2018.06.005
  • Samadianfard, S., Jarhan, S., Salwana, E., Mosavi, A., Shamshirband, S., & Akib, S. (2019a). Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water, 11(9), 1934. doi: 10.3390/w11091934
  • Samadianfard, S., Majnooni-Heris, A., Qasem, S. N., Kisi, O., Shamshirband, S., & Chau, K. W. (2019b). Daily global solar radiation modeling using data-driven techniques and empirical equations in a semi-arid climate. Engineering Applications of Computational Fluid Mechanics, 13(1), 142–157. doi: 10.1080/19942060.2018.1560364
  • Seo, I. W., & Cheong, T. S. (1998). Predicting longitudinal dispersion coefficient in natural streams. Journal of Hydraulic Engineering, 124(1), 25–32. doi: 10.1061/(ASCE)0733-9429(1998)124:1(25)
  • Tayfour, G., & Singh, V. P. (2005). Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. Journal of Hydraulic Engineering, 131(11), 991–1000. doi: 10.1061/(ASCE)0733-9429(2005)131:11(991)
  • Taylor, G. (1954). The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 223(1155), 446–468. doi: 10.1098/rspa.1954.0130
  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106, 7183–7192. doi: 10.1029/2000JD900719
  • Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer, p. 187.
  • Vapnik, V. (1998). Statistical learning theory. New York: John Wiley & Sons, p. 740.
  • Wang, Y., & Huai, W. (2016). Estimating the longitudinal dispersion coefficient in straight natural rivers. Journal of Hydraulic Engineering, 142(11).
  • Wang, Y., Huai, W., & Wang, W. (2017). Physically sound formula for longitudinal dispersion coefficients of natural rivers. Journal of Hydrology, 544, 511–523. doi: 10.1016/j.jhydrol.2016.11.058
  • Wang, Y., & Witten, I. H. (1997). Induction of model trees for predicting continuous classes. In Proceedings European conference on machine learning, Prague, Czechoslovakia.
  • Woznicki, S. A., Baynes, J., Panlasigui, S., Mehaffey, M., & Neale, N. (2019). Development of a spatially complete floodplain map of the conterminous United States using random forest. Science of the Total Environment, 647, 942–953. doi: 10.1016/j.scitotenv.2018.07.353
  • Zeng, Y., & Huai, W. (2014). Estimation of longitudinal dispersion coefficient in rivers. Journal of Hydro-environment Research, 8(1), 2–8. doi: 10.1016/j.jher.2013.02.005
  • Zhu, S., Heddam, S., Nyarko, E. K., Hadzima-Nyarko, M., Piccolroaz, S., & Wu, S. (2019). Modeling daily water temperature for rivers: Comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models. Environmental Science and Pollution Research, 26(1), 402–420. doi: 10.1007/s11356-018-3650-2